The Journal of Systems and Software 108 (2015) 178-192

The Journal of Systems and Software

Contents lists available at ScienceDirect

The Journalof
Systoms and Software

il

journal homepage: www.elsevier.com/locate/jss

Exploiting traceability uncertainty among artifacts and code
Achraf Ghabi*, Alexander Egyed

@ CrossMark

Johannes Kepler University, AltenbergerstrafSe 69, 4040 Linz, Austria

ARTICLE INFO

Article history:

Received 14 April 2014
Revised 29 May 2015
Accepted 16 June 2015
Available online 26 June 2015

Keywords:

Traceability

Artifacts to code mapping
Analysis

ABSTRACT

Traceability between software development artifacts and code has proven to save effort and improve quality.
However, documenting and maintaining such traces remains highly unreliable. Traceability is rarely captured
immediately while artifacts and code co-evolve. Instead they are recovered later. By then key people may
have moved on or their recollection of facts may be incomplete and inconsistent. This paper proposes a lan-
guage for capturing traceability that allows software engineers to express arbitrary assumption about the
traceability between artifacts and code - even assumptions that may be inconsistent or incomplete. Our ap-
proach takes these assumptions to reasons about their logical consequences (hence increasing completeness)
and to reveal inconsistencies (hence increasing correctness). In doing so, our approach’s reasoning is correct
even in the presence of known inconsistencies. This paper demonstrates the correctness and scalability of
our approach on several, large-scale third-party software systems. Our approach is automated and tool sup-

ported.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Traceability is very important during software development, es-
pecially for change impact analysis (Briand et al., 2006; Mdader and
Egyed, 2011) during the maintenance stage (Haumer et al., 1999). Em-
pirical evidence suggests that requirements to code traces can make
bug fixes and features extensions 20-30% faster and over 50% more
correct (Briand et al., in press; Mdder and Egyed, 2011). These ben-
efits are substantial and accentuate that traceability should play a
major role in the software engineering life cycle. Existing commer-
cial tools typically support the recording of traces but not necessarily
their creation or maintenance.

It is presumed that software engineers 'know’ the traces between
software artifacts (e.g., requirements or model elements) and code.
Existing tools merely record them (Egyed and Grunbacher, 2002) -
typically using a trace matrix (TM) that cross-reference artifacts at
the level of granularity the engineers chose (e.g., requirements to
classes vsiequirements to methods traces). The engineers’ job is to
manually fill in the fields of the matrix by deciding for each cross-
reference whether or not the element on the one side, say a require-
ment, is implemented by the element on the other side, say a method.
A trace matrix thus reveals that traceability is of quadratic complex-
ity: axc for a artifacts (e.g., requirements) and c code elements (e.g.,
methods). Each cell in a trace matrix requires a non-trivial, human

* Corresponding author. Tel.: +4373224684388.
E-mail addresses: a@ghabi.net (A. Ghabi), alexander.egyed@jku.at (A. Egyed).

http://dx.doi.org/10.1016/j.jss.2015.06.037
0164-1212/© 2015 Elsevier Inc. All rights reserved.

decision. Consider, for example, the Gantt Project system (GAN, 2014)
(one of our study systems) with hundreds of artifact elements and
thousands of Java methods. A complete traceability matrix for the
Gantt Project system requires tens of thousands of decisions; one for
every model element/Java method pair. The scalability implication
is daunting (Bianchi et al., 2000). Once established, the traceability
must be kept up-to-date while the software artifacts and/or the code
changes (Clarke et al., 1999) - to remain consistent and useful.

Yet, traceability cannot be captured or maintained by a single en-
gineer because in any complex engineering effort engineers have par-
tial knowledge only. Traceability is thus a collaborative process that
involves many engineers. Moreover, traceability is a mostly manual
process (automation are mostly limited to information retrieval dis-
cussed later). Given that traceability is also of non-linear complex-
ity, it should not surprise that there is never a guarantee of cor-
rectness or completeness. Naturally this is a problem because the
aforementioned studies on the benefits of traces (Briand et al., in
press; Mdder and Egyed, 2011) presume correctness and complete-
ness. Now consider that today most engineering projects do not even
capture traceability (upfront). Rather, they capture it at later stages
(after system completion) or never in which case this knowledge re-
mains in the heads to the engineers who built the system. Unfortu-
nately, during the development of a system and after its delivery to
the client, key personnel may move on. Even if they stay, it is well
documented that the engineers’ recollection of artifacts and code
fades over time - and with it the memory of traceability (Gotel and
Finkelstein, 1994). However, it is exactly here that traceability is most
needed.

http://dx.doi.org/10.1016/j.jss.2015.06.037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.06.037&domain=pdf
mailto:a@ghabi.net
mailto:alexander.egyed@jku.at
http://dx.doi.org/10.1016/j.jss.2015.06.037

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192

Explicit traceability capture is thus a pre-requisite to principled
software engineering. This paper introduces a language and approach
that allows engineers to express traceability at any level of detail,
completeness, certainty, and correctness. An example of a traceability
uncertainty is if the engineer remembers that a given requirement
is implemented in some set of classes but not exactly which ones of
them. It would be wrong for a trace capture tool to force a precise
input from an engineer in the face of such uncertainty. Yet, if multiple
engineers input partially uncertain traceability then it is possible to
combine this knowledge for a more complete understanding. We will
demonstrate that it is possible to automatically reduce, even resolve,
some uncertainty by automatically inserting logical consequences
of the input provided by the engineers. As this example shows, our
approach is most useful for situations where multiple engineers
provide input about traceability. Yet, traceability provided by differ-
ent engineers may not be consistent. We will demonstrate that it
is possible to automatically identify incorrectness where the input
provided by engineers is contradictory. But most significantly, we
will demonstrate that this automation is correct even in the presence
of inconsistent input.

This paper combines our findings from three conference papers
where we described the traceability language for model-to-code
traceability (Egyed, 2004), an effective reasoning mechanism that
is able to check correctness (Ghabi and Egyed, 2012), and manag-
ing inconsistencies in SAT problems with HUMUS (Nohrer et al.,
2012). The added value is in (a) providing a scalable, precise basis
for reasoning based on SAT solvers; (b) more numerous and larger
empirical evaluations; (c) a broadened scope that covers require-
ments, model elements and code; and (d) the integration of HUMUS
and SAT for correct reasoning in context of potentially inconsistent
traceability.

2. Illustration

We use the illustration of a video-on-demand system (VOD)
(Dohyung) throughout this work to explain many of the uncertainty
and incompleteness issues that characterize artifact-to-code trace-
ability. In Fig. 1 we depict a state transition diagram on the left side
and a table of requirements on the right side. The state transition di-
agram models the behavior of the VOD system. The table of require-
ments on the right side of Fig. 1 is an abbreviated documentation of
the requirements implemented in VOD. Together, these two diagrams
depict the many artifacts that engineers may want to trace to the
code. For example, each requirement (i.e. row) in the table is an ar-
tifact that should be implemented somewhere in the code. The same
is true to for the state transitions. For the sake of brevity we will be
referring to the requirements and state transitions by their IDs: e.g.,
R1 or S4.

The VOD is a real albeit smaller system implemented in Java. For
the sake of brevity we abstract the implementation into five pieces of
code - labelled by their short acronyms {A, B, C, D, E}. Each of them

stands for a set of Java classes.
Stopped

S4: Stop

Start

S1: Select

Selecting

Playing

S2: Play

End

Q.

179
3. Artifacts and code relationships

While it is common that engineers create and use artifact de-
scriptions, it is still not common to document where exactly each
artifact is implemented in the source code or how it is related to
other software development artifacts. Knowing about traceability is
important for understanding complex systems and understanding
the impact of a change (e.g., if a part of the requirements changes
how would it impact the implementation?). The goal of this work is
to help the engineer explore this kind of relationship between soft-
ware development artifacts and the code. A software development
artifact could be any common artifact used during the development
and/or maintenance of a software project such as UML model, use
cases, or requirements definition.

We refer to a piece of source code as a code element where the
granularity of the code element is entirely user-definable. A code ele-
ment could be a line of code, a method, a class, a package, or any other
logical grouping (e.g., architectural component). We will discuss the
implications of different granularity choices later. We presume that
the code elements are disjoint in that the same line of code may not
belong to more than one code element.

We refer to individual requirements, states transitions, etc as arti-
fact elements. Here also the granularity is arbitrary user definable. For
example, we could trace the entire state transition diagram to code or
we could trace its individual states and transitions. The relationship
between artifact elements and code elements is bidirectional. We ex-
pect that a single artifact element is implemented in multiple code
elements (one-to-many mapping) because artifact elements are typ-
ically higher-level descriptions of the implementation of the system.
Hence they are expected to require larger amounts of code to im-
plement them. However, a single code element may also implement
multiple artifacts (particularly, if the granularity of code elements if
coarse). Moreover, it is not correct to assume that every code element
must implement an artifact element. This assumption is true only if
the artifact elements describe the entire software system. Artifacts
(e.g. models) can be incomplete either by choice or by omission. For
example, the state transition diagram in Fig. 1 is by no means com-
plete and hence not all code will trace to it.

Fig. 1 includes a state transition diagram (which is a behavioral
model) and it includes also a list of requirements. Those artifacts pro-
vide independent perspectives onto a software system - we speak of
multiple perspectives or views (Antoniol, 2001; Gotel and Finkelstein,
1994; Parnas, 1972). Each perspective describes the software system
from a different point of view. For example, the state transition per-
spective describes the software system independently from the re-
quirements but there are clearly overlaps. R4 about stopping the play-
back, for example, is also implemented in the state transition diagram
through various transitions. Perspectives may be at different levels of
abstraction (i.e., separating the structure from the behavior). A code
element may thus implement artifact elements of different perspec-
tives. For example, whatever code implements the stopping of a play-
back implements both the stop transitions and the stop requirement.

Req.ID| Name of Requirement
R1 Select a Movie

R2 Play a Selected Movie
R3 Pause Playing

R4 Stop Playing

Fig. 1. Illustration System: Video On Demand (VOD).

180 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192

4. Language for expressing traceability
4.1. Precise trace information

Existing state-of-the-art requires precise traceability information
which is often captured in form of a trace matrix (TM). Such a trace
matrix would identify the artifact elements and code elements at a
level of granularity defined by the engineer. Of course, precise trace
information among some cells in a trace matrix may exist and engi-
neers should still be able to capture them. In our language, the trace-
ability between an artifact element ae and a code element ce would
then be defined either as a trace(ae, ce) indicating that ce is imple-
menting ae; or as a no-trace(ae, ce) indicating that ce does not imple-
ment ae. Establishing such traceability information requires a precise
knowledge about each code element and artifact element individu-
ally. Typically, engineers have such precise knowledge (i.e. expertise)
on the parts of a system which they have been personally involved
with. However, they may also have knowledge about other parts of
that system though perhaps less precise or certain.

4.2. Expressing uncertainty

In interviews and surveys with researchers and practitioners
(Egyed et al., 2010; Mdder and Egyed, 2011; Mdder and Egyed, 2012)
we identified a range of uncertainty scenarios. Subsequent study re-
vealed that these uncertainties were nearly always the result of not
knowing the role of individual artifacts or code in groups thereof. For
example, one may know that the selection and subsequent playing
(group denoted as {select, playing}) of a movie is implemented in
code elements {A, B, C}. Yet, one may not know which part of code {A,
B, C} belongs to select and which part belongs to playing individually.
In Ghabi and Egyed (2012), we introduced the concept of groupings
of artifact and code elements to support grouping uncertainties. The
code element group (CEG) is a group bundling one artifact element to
a set of code elements. For example, ceg(R2, {B, C}) expresses that the
artifact element R2 is implemented by B, C, or both. Furthermore, the
artifact element group (AEG) is a group bundling one code element
with a set of artifact elements, e.g., aeg(C, {R1, R2}). It expresses that
the code element C is implementing requirements R1, R2, or both. In-
deed, trace, no-trace, ceg, and aeg are the four basic constructs of our
approach through which all uncertainties are expressible. We do not
argue that these are the most common constructs but rather they are
the most simplistic constructs to express traceability certainties and
uncertainties. However, more complex situations are awkward to ex-
press in form of ceg and aeg. Our approach thus also defines a higher-
level language which describes situations we encountered in practice
and can be broken down to the four basic constructs for reasoning.
These are discussed next.

4.3. Language for expressing uncertainty

Engineers could provide input in form of the four constructs dis-
cussed above. In addition, our approach supports artifact to code re-
lationships for more complex but common situations. These relation-
ships are denoted as {aex}relationship{cex} where {aex} refers to the
set of artifact elements, {cex} to the set of code elements, and rela-
tionship to the situation (e.g., implAtLeast, implAtMost, implExactly,
or implNot). For example, one may know that {playing} is definitely
implemented in code element {A} but it could be implemented in
other code elements also: hence, {playing} implAtLeast {A}. The star
symbol (x) in this notation expresses multiplicity in that aex may
stand for multiple artifact elements or cex for multiple code elements.
We denote CE as the set of all code elements and AE" as the set
of all artifact elements within a given perspective P where the per-
spective is entirely user definable (e.g., requirements, architecture, or
state chart). The statement CE — {cex} identifies all the code elements

other than those identified in {cex} (i.e., a relationship usually affects
a set of code elements {cex} but often also the complementary set of
other code elements CE — {cex}). Likewise, the statement AE” — {aex}
identifies all artifact elements in a given perspective other than those
identified in {aex}. Note that this language was already introduced in
Egyed (2004) in principle. In Ghabi and Egyed (2012), we then added
a formal basis for this language based on the four basic constructs
discussed above and guidance in form of consistency, completeness,
and granularity constraints. This paper uses the formal basis provided
there but provides a new SAT-based realization thereof. The key ben-
efit of this realization is that it no longer fails in the presence of incon-
sistencies. Recall that inconsistencies are the result of contradictory
input which is the norm if traceability originates from multiple engi-
neers. Inconsistencies normally confuse a reasoning engine. However,
this paper adds HUMUS as another technology to correctly isolate in-
consistent input from reasoning to ensure that it no longer affects the
correctness of the results. This paper also provides extensive empir-
ical evaluation on the scalability and effectiveness of our approach
(discussed later).

4.4. Defining common uncertainty constructs

We found that engineers provide a mixture of certainties and
uncertainties as input to traceability. It is straightforward to reason
about the certainties. They are facts in a reasoning engine. It is more
challenging to reason about uncertainties. Uncertainties provide flex-
ible means for establishing input. Therefore, uncertainties must be
expressed as constraints on facts which require us to formalize these
constraints and their logical consequences. Based on our observation
of engineers (Egyed et al., 2010; Mdder and Egyed, 2011; Mader and
Egyed, 2012) describing their certain and uncertain knowledge about
traceability, we identified four common relationships covering the
expression of the observed scenarios. Note that these relationships
are not the only ones that exists but we found them to be applica-
ble in many situations. Additional relationships may be defined as
needed. This section discusses the different types of relationships and
the logical consequences of uncertainties which are useful for assess-
ing correctness and completeness of traceability and for better un-
derstanding trace granularity.

4.4.1. ImplAtLeast input

The input {aex} implAtLeast {cex} defines that the artifact ele-
ments in {aex} are implemented by all of the code elements in {cex}
and possibly more. An engineer may want to use this relationship if
s/he is certain that the given code elements cex implement the given
artifact elements aex but s/he is not certain as to whether other code
may also implement the given artifact elements (e.g., the engineer
may have been in charge of some code that partially implemented a
feature). This input not only provides some facts but it also implies a
correctness constraint ensuring that every code element in cex indi-
vidually must be implementing a subset of aex. In the context of the
implAtLeast construct, we derive a CEG for each of the artifact ele-
ments and an AEG for each of the code elements as follows:

forall ae : implAtLeast. {aex}

add ceg (ae, implAtLeast. {cex})
forall ce: implAtLeast. {cex}

add aeg (ce, implAtLeast. {aex})

For example, let us consider the following input example about
requirements R1 and R3 in Fig. 1:

Input 1: {R1, R3}implAtLeast {A, C}

Each requirement (i.e. artifact element) must be implemented by A
and/or C. And each code element must be implementing R1 and/or
R3. The corresponding AEGs and CEGs are:

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192 181

o aeg(A, {R1, R3}) and aeg (C, {R1, R3})
o ceg(R1, {A, C}) and ceg (R3, {A, C})

As such, aeg(A, {R1, R2}) implies that code A must either imple-
ment the artifact elements R1 or R2. The “or” operator is a logical
“or”, implying that A may implement either R1 or R2 or both R1 and
R2.The CEGs describe a relationship between a single artifact element
and multiple code elements. For example, ceg(R1, {A, C}) implies that
the artifact element R1 must be implemented in either A or C or A
and C (logical “or” again). Note that this input expresses the certainty
that each artifact element in {cex} must be implementing a subset of
{aex}. But it also has uncertainties. The artifact elements in{ae} may
be implemented by code other than {ce}(denoted as CE — {ce} where
CE is the set of all code elements) - in the following referred to as
Uncertainty (1). Moreover, other artifact elements within the same
artifact/perspective (denoted as AEP — {ae} where AEF is the set of ar-
tifact elements in a perspective) may be implemented by code in ce
- in the following referred to as Uncertainty (2). For example, code A
may implement any subset of artifact elements {R1, R3}.

4.4.2. ImplAtMost input

The input {aex} implAtMost {cex} defines that the artifact ele-
ments in {aex} are implemented by some of the code elements in
{cex} but certainly not more. This input has Uncertainty (2) above.
Moreover, an individual code element in ce may or may not be im-
plementing any artifact element in ae - in the following referred to as
Uncertainty (3). But this input also expresses the certainty that every
other code element not in {cex} must not implement any artifact ele-
ment in {aex}. Note that it is also important to understand what code
elements are not implementing an artifact element because know-
ing that a code element is implementing an artifact element does not
imply that it cannot be implementing another artifact element of the
same perspective. An engineer may use this relationship if it is known
where roughly the given artifact elements are implemented but the
details are unknown (e.g., the engineer may know that an artifact el-
ement is implement in class A, but not exactly which methods of that
class).

forallae: implAtMost. {aex}
&ce: CE—implAtMost. {cex}
add no—trace (ae, ce)
forall ae: implAtMost. {aex}
add ceg (ae, implAtMost. {cex})

For example, if {R4} implAtMost {C, D} then R4 is either imple-
mented in C, or D, or C and D; and R4 may not be implemented by
code other than Cor D:

» ceg(R4, {C D})
« Certainties: no-trace(R4, A); no-trace(R4, B); no-trace(R4, E)

4.4.3. ImplNot input

The input {aex} implINot {cex} defines that the artifact elements
in {aex} are not implemented by any of the code elements in {cex}.
This input is a negation of the implAtMost input because {aex} is
not implemented by {cex} implies {aex} implAtMostCE—{cex} (the re-
maining code). But still, it is not legitimate to assume the implAtMost
input as long as it has not been explicitly defined by the engineer. Fur-
thermore, there is no need to derive AEG or CEG in the context of the
implNot construct. We could, however, generate precise traceability
information indicating a no-trace between each artifact element in
{aex} and each code element in {cex}.

4.4.4. ImplExactly input

The input {aex} implExactly {cex} defines that every code element
in {cex} implements one or more artifact elements in {aex} and that
the artifact elements in {aex} are not implemented in any other code

(CE — {cex}), which allows us to define no-trace between each arti-
fact element in {aex} and each code element in CE — {cex}. We can
also safely state that each code element in {cex} implements a sub-
set of {aex}. But this does not mean that these code elements could
not implement other artifact elements (AE” — {aex}) - Uncertainty
(2) above. This input has correctness constraints similar to the ones
above and allows us to generate AEGs and CEGs as previously dis-
cussed:

forallae: implExactly. {aex}
& ce: CE—implExactly. {cex}
add no—trace (ae, ce)
forall ae: implExactly. {aex}
add ceg (ae, implExactly. {cex})
forall ce: implExactly.{cex}
add aeg (ce, implExactly. {aex})

For example, if {R2, R3} implExactly {B,C} then we can gener-
ate two AEGs and two CEGs (e.g,. neither R2 nor R3 may be imple-
mented by code other than B or C). The implExactly input also im-
plies a few certainties, such as no-trace(R2, A) because if R2 must be
implemented within B and C:

* aeg (B, {R2, R3}); aeg(C, {R2, R3})

o ceg (R2, {B, C}); ceg(R3, {B, C})

o Certainties: no-trace (R2, A); no-trace(R3, A); no-trace(R2, D); no-
trace(R3, D); no-trace(R2, E); no-trace(R3, E)

4.4.5. Footprint graph

We capture both facts and constraints (certainties and uncertain-
ties) in a graph structure, which we call the footprint graph. The graph
contains a node for every code element (called CE-nodes) and a node
for each artifact element (called AE-nodes). The connections between
these nodes describe the certainties of the input (trace or no-trace) -
and the certainties that are generated out of the logical consequences
of the uncertainties. E.g., a trace(ae, ce) is depicted by a continues line
between the AE-node of 'ae’ and the CE-node of 'ce’. Analogically, no-
traces are depicted by dashed lines. Furthermore, the graph contains
nodes to capture artifact element groups (AEG-nodes) and code ele-
ment groups (CEG-nodes). These two kinds of nodes describe the un-
certainties of the input. The correctness constraints are inferred from
these nodes. Note that the visual footprint graph in this paper is quite
similar to the graph introduced in Ghabi and Egyed (2012). However,
the implementation does not use this graph (it is for illustration pur-
poses) but instead is based on SAT expressions.

Input 1: {R1, R3}implAtLeast {A, C}
Input 2: {R2, R3}implExactly {B, C}
Input 3: {R4}implAtMost {C, D}

For the simple illustration discussed in Section 2 and the three
inputs discussed previously and repeated above, Fig. 2 shows the
corresponding footprint graph. The middle two columns depict the
code elements (CE-nodes) for A, B, C, D, and E; and the artifact el-
ements (AE-nodes) for R1, R2, R3, and R4. The left column depicts
the artifact element groups (AEG) by connecting each set of arti-
fact elements to the corresponding code element, and the right col-
umn depicts the code element groups (CEG) by connecting each set
of code elements to the corresponding artifact element. This graph
structure depicts the certainties as connections between CE-nodes
and AE-nodes and uncertainties as connections between CE-nodes
and AEG-nodes or AE-nodes and CEG-nodes. In terms of scalabil-
ity, the footprint graph structure grows linearly with the user input
(#totalnodes = #CE—nodes + #AE—nodes).

The footprint graph is the foundation for automatic trace gen-
eration. During trace generation, the artifact elements in the graph

182 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192

R — A b

wN
AN
\
(R2, R3) AN
Uncertain A
\>
v
7
/7 /
/
DKy
/7/(\ \ Uncertain
4 S~ Trace
—_—— - R2 B,C
AEG Code Elements Artifact Elements CEG

Fig. 2. Footprint Graph from Input.

are propagated from the CEG-nodes and AEG-nodes (containing the
uncertainties) to the CE-nodes and AE-nodes (connected by the cer-
tainties). There are several such propagation rules discussed below
which are presented in our previous work (Ghabi and Egyed, 2012)
for model-to-code traceability whereas (Egyed, 2004) supported only
one of those rules.

4.4.6. Propagation rules for reducing uncertainty

Consider the example in Fig. 2 once again. The first input resulted
in aeg(A, {R1, R3}) implying that A must implement either R1 and/or
R3. Then the third input resulted in no-trace(R2, A) and no-trace(R3,
A). So if A is supposed to be implementing {R1, R3} but A is not sup-
posed to implement R3 then clearly A must be implementing R1 -
the only remaining artifact element in the AEG. Recall that the AEG
defines a constraint over multiple artifact elements where at least
one of these artifact elements has to be implemented by the code el-
ement. Uncertainties in an AEG can thus be resolved (or reduced) by
eliminating artifact elements that are known to not implement the
code based on other input:

if no—trace (ae, ce)
forallceg: CEGwhere ce in ceg. {cex}
ceg. {cex} := ceg. {cex}—ce
forallaeg: AEG where ae in aeg.{aex}
aeg.{aex} := aeg.{aex}—ae

4.4.7. Propagation rules for suggesting trace

Uncertainties in a CEG are resolved similarly. For example, the first
input also resulted in ceg(R3, {A, C}) implying that R3 was supposed
to be implemented in either A and/or C. Since R3 was excluded from
code element A, the CEG is left with only one code element, namely
C. This remaining code element must be implementing R3 for CEG to
be satisfied.

if ceg. {cex}.size = 1then
trace (ceg. ae, ceg. {cex}. first)
remove ceg
if (aeg. {aex}.size = 1) then
trace (aeg. {ae}. first, aeg. ce)
remove aeg
Fig. 3 shows the footprint graph after the application of the propa-
gation rules discussed above. Note that the certainty increased as the
links between AEs and CEs increased while uncertainty decreased be-
cause there are fewer CEG and AEG nodes now. The propagation rules

are applied for as long as possible. The order in which the rules are
applied is irrelevant.

HAC)

R4 {C,D}
Uncertain N
/7,7 \
Trace @7/(\ Uncertain
SN Trace
Tt B (6.0}

Artifact Elements CEG

AEG Code Elements

Fig. 3. Footprint Graph after Propagation Rules.

4.4.8. Consistency constraints

Input given by the engineers may be partially/fully generated
by hand and may be based on potentially outdated documentation
or second-hand information (i.e., from previous project members).
Consequently, the input given by the engineers cannot be fully
trusted - indeed it may even be inconsistent where one engineer’s
understanding contradicts another engineer’s understanding. Our ap-
proach assumes that information provided by the engineers is cor-
rect unless it violates correctness checks. Fortunately, not every input
combination is valid and our approach identifies four forms of input
inconsistencies. Do note that consistency does not imply correctness;
however, with increasing quantity of input it becomes increasingly
unlikely that an input containing errors remains consistent, espe-
cially if the input is provided by different engineers (we validate this
in Section 7.2.2.1). The following demonstrates how our graph struc-
ture supports correctness checking.

(1) Every AEG must have at least one artifact element:.

Vaeg € AEG, aegsize >0

An AEG is created if a code element is known to include two or
more artifact elements (e.g., recall implAtLeast). Thus, it is invalid to
have all artifact elements removed from an AEG. For example, such a
violation occurs with the following input:

Input 4: {R1}impINot {A}

Recall from Section 4.4.6 that the aeg(A, {R1, R3}) from input 1 was
previously reduced to trace(R1, A) because R3 is not implemented by
A. If another engineer now states that R1 is also not implemented by
A then the AEG is left without an artifact element. In this case, input 1
could no longer be satisfied. Note that it is typically easy to see when
two inputs conflict but it is hard to see conflicts among three or more
inputs. The example above is a conflict among inputs 1, 2, and 4 and
not obvious to identify despite the small size of the illustration.

(2) Every CEG must have at least one code element:.

Vceg € CEG, cegsize >0

A CEG is created if an artifact element is known to be implemented
by one or more code elements. It is invalid to have all code elements
removed from a CEG. Such a violation occurs with the input:

Input 5: {playing} impINot{C}

Recall from Section 4.4.7 that the ceg(R3, {A, C}) from input 1 was
previously reduced to trace(R3, C) because R3 was not implemented
by A. If now R3 is also not implemented by C then the CEG is left with-
out a code element.

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192 183

(3) Every artifact element must be implemented by some code:. The
premise of this approach is that it works only on artifacts that are
implemented in code. Even if no CEG or AEG is violated, we must still
make sure that every artifact element is implemented by some code.
This check is particularly useful for those artifact elements in per-
spectives for which no input was defined.

(4) A code element cannot be implementing and not implementing an
artifact element at the same time:. A CE-node contains the certain-
ties of the input and the resolved uncertainties of the CEG-nodes and
AEG-nodes. These certainties should not conflict such that a code el-
ement implements and not implements the same artifact element.
Obviously, saying R2 is implemented by A and R2 is not implemented
by A, produces this kind of error - though in practice such conflicts
are hard to see manually if multiple input are involved.

4.4.9. Granularity constraints

While software development standards mandate the establish-
ment of traces between artifact and code, they do not define at what
level of granularity (detail) these traces should be generated. For ex-
ample, if the code is implemented in Java then the engineer has
the choice of establishing traceability to Java classes, Java methods,
or even individual lines of code. It is also possible to establish the
traceability to Java packages or any other architectural grouping (e.g.,
client code vs. server code).

Obviously, the level of granularity vastly affects the cost of trace
generation. In Egyed et al. (2005), we determined that the input quan-
tity of the artifact-to-class mappings was almost 10 times less than
the input quantity of the artifact-to-method mapping; but 10 times
more than the model-to-package mapping. This represents a signif-
icant cost factor since this ratio is roughly equivalent to the effort.
However, in Egyed et al. (2005), we also discussed that a coarser gran-
ularity resulted in quality loss because functionality was grouped to-
gether that was separated on a finer level of granularity (i.e., we found
a 16% increase in the false positives rate of traces based on their
overlap on Java methods versus Java classes). But in same study we
found that the return on investment flattens out significantly when
the granularity was finer than implementation classes (i.e., traces be-
tween model and methods/lines of code cost much more than was
gained in quality).

Obviously, what granularity rate to choose depends on the needs
of the engineers and the effort they are willing to put in. Previously,
we argued that the granularity should be staged depending on the
importance of the artifact element. One may start off by defining the
granularity on a coarser level (e.g., artifact to Java classes) and then
refine key areas to a finer level of granularity (e.g., artifact to Java
methods). Here we propose an additional avenue by defining gran-
ularity constraints that suggest which code elements to refine. This is
discussed next.

(5) Every correctness constraint a granularity constraint:. It must be
mentioned that any of the four correctness constraints discussed
above could be caused by coarse granularity. Recall that input 4
{R1} impINot {A} caused a correctness violation because the code el-
ement excluded both artifact elements R1 and R3 from the AEG. But
what if code element A was too coarse grained and should have been
broken down into methods, say A1 and A2. The following input, on a
finer level of granularity, resolves the conflict:

Input 1: {R1, R3}implAtLeast {A1, C}
Input 4: {R1}impINot {A2}
Correctness violations indicate problems where the input can-
not be reconciled. Granularity thus may cause correctness viola-
tions because they might group code elements that should not be-

long together. Note that it is not necessary to refine the granularity
level of all code elements. The correctness constraint identified the

code element A as the offending place (we discuss later how this
is done correctly automatically). A selected refinement of A only is
thus sufficient to resolve the problem if it is the result of a granular-
ity problem. Of course, some input may be incorrect irrespective of
the granularity. Changing the granularity there would not resolve the
problem.

4.4.10. Completeness constraints

Input that is correct is not necessarily complete. Recall that our
input language allows for two degrees of uncertainties — partial-
ity and cluster uncertainties. The propagation rules discussed above
demonstrated how some uncertainties can be resolved. Yet, it must
be stressed that the propagation rules must adhere to the logical
consequences of the input. Likely not all input uncertainty can be
resolved and it is useful to quickly identify those artifact elements
and/or code elements that are still incomplete. For an artifact ele-
ment to be complete, it must have traces and no-traces to all code
elements:

complete(ae) =
#trace(ae) + #no—trace(ae) = #CE

The completeness of an artifact element can be determined for
every artifact element separately. A code element implementing
an artifact element 'ae’ is complete if all other artifact elements
of the same perspective AE” — {ae} are either defined as trace or
no-trace.

5. Encoding and correct reasoning

One of the main challenges is to correctly reason about the lan-
guage presented above - even in the presence of inconsistencies. On
the surface, we require a reasoning engine that allows us to encode
the facts, uncertainties, and constraints. The reasoning engine’s main
responsibility would be to refine the input through the propagation of
the rules discussed in the previous section and to identify constraint
violations. We tested this on two, quite different reasoning engines:
(1) Drools (DRO, 2014) - an incremental business reasoning engine;
and (2) PicoSAT (Biere, 2008) - a light weight yet powerful SAT Solver.
Both engines were capable of performing the required computations
and delivered correct results though the performance of PicoSAT
was far superior to Drools. But below the surface, we also require a
reasoning engine that functions correctly in the presence of inconsis-
tencies - a key requirement since inconsistencies among different en-
gineers’ assumptions are expected to be the norm and not the excep-
tion (Egyed et al., 2010). Here the SAT reasoning engine was superior
because we could augment its reasoning to support correct reasoning
in the presence of inconsistent input. The following discusses both
implementations and also how correct reasoning is possible through
correct isolation of inconsistencies.

5.1. Encoding traceability language in drools

Drools is a Business Rules Management System developed by
JBoss. It delivers a very powerful rules engine (Drools Expert) with
its own rules language (DSL). Each rule has a condition. Each time
the condition is satisfied, the action of the rule will be executed. The
rule depicted in Listing 1 shows how AEGs and CEGs are generated
from implAtLeast constructs. Further rules handle the different types
of constructs and all the reasoning of reducing uncertainty from AEGs
and CEGs.

The rules language is straight forward and could easily be ex-
tended to cover new rules (see future work). This is a key feature of
our tool TraceAnalyzer which will be introduced later (see Section 6).
Unfortunately, the Drools reasoning engine (Version 5.x) is based on
backward chaining reasoning. Once the reasoning engine is started,
the engine fires the rules in the knowledge base and then checks if

184 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192

Listing 1. Derive AEG/CEG from ImplAtLeast with Drools

rule ”Generate.facts_from.’ImpAtLeast’”
when
$c : Construct(type =— IMPL_AT_LEAST)
then
for (Artifact src $c.getSources ()) {
createAEG ($d, src, $d.getTargets()));

for (Artifact tar $d.getTargets ()) {
createCEG ($d, tar, $d.getSources()));
}
end

there are conditions satisfying the fired rules. If the condition is not
satisfied the result from the fired rule will be ignored as if it was not
fired. This kind of reasoning is inefficient as it computes unneeded
facts and waits to invalidate them later when the condition of the
rule is not satisfied. E.g. the rule in Listing 1 will be called for ev-
ery construct with type implAtLeast. The created AEGs and CEGs will
be effectively added to the knowledge base only for input construct
of type implAtLeast and they will be ignored for all other constructs.
The Drools engine performs very well with a moderate number of
input constructs but its scalability suffers given the exploding num-
ber of rules fired even if they are not satisfied. During our evaluation
we faced many cases where the engine required hours to resolve the
input. Therefore we developed another implementation of our ap-
proach using a SAT Solver. This reduced the runtime of some case
study systems from hours to seconds.

5.2. Encoding traceability language in SAT

SAT solvers are highly efficient tools designed to check the sat-
isfiability of a problem encoded in conjunctive normal form (CNF).
Encoding a TM of a given system into a CNF input is a straightforward
operation. Each cell in a TM is basically a Boolean literal that could
be “true” if the cell contains a trace, or “false” if the cell contains a
no-trace. Depending on the uncertainty input, our approach derives a
number of possible traces and no-traces that fill up some cells in the
TM. We define the values of the literals corresponding to the filled
cells by their trace/no-trace value. The empty cells are encoded as
variables (undefined). Every AEG or CEG resulting from the input is
translated into a clause - a disjunction of all the literals referenced
by the corresponding AEG or CEG. The conjunction of all the clauses
resulting from encoding all the AEGs and CEGs builds a CNF formula,
which is the presentation of the initial uncertainty input that we use
as an input for the SAT solver.

As an example, consider the construct Input 1: {R1, R3} im-
plAtLeast {A, C}, which can be decomposed into the ceg(R4, {C, D})
and several no-trace relationships such as no-trace(R4, A). Each cell
in the TM is represented by a literal in the CNF formula, in this case
by the literal R4—A, with the semantic of being positive for trace and
negative for no-trace. Since each no-trace relation corresponds to one
cell exactly, they can be directly translated to clauses containing a
negated variable. For example, —R4—A says that R4 does not trace to
code element A. The semantic of the ceg(R4, {C, D}) is that R4 is im-
plemented by C or D or both of them. As a consequence, the cells
R4—C and R4—D cannot both be no-traces. This can be represented
as the clause R4—C v R4—D. However, since both the no-trace and the
CEG relationships stem from the same construct provided by an engi-
neer, we add a clause selector variable to the clauses stemming from
a single input construct, i.e., input1. As a result, for our example the
construct {R4} implAtMost {C, D} is translated to the following CNF:

(—input1 v R4—C v R4—D) A (—input1 v —R4-A)

So, if the clause selector variable input1 is true then the clauses are
included into reasoning, otherwise they are ignored (this is important

for correct reasoning discussed below where we need to isolate of-
fending inputs). For the sake of brevity we have shown an example of
selectors on construct level, but we should note that the granularity
of our reasoning could be arbitrarily changed by changing the refer-
ence of the selector variables: e.g. we can introduce selector variables
to reference each clause of CEGs or AEGs, or even literals of cell in the
RTM. The finer the granularity of the selector variable, the more se-
lectors are added to the CNF. A finer granularity makes the CNF bigger,
which requires the SAT engine to spend more reasoning time. It is a
tradeoff between performance and the granularity of the results.

5.3. Reasoning about traceability in SAT

The SAT solver checks whether the input CNF is satisfiable (SAT)
or unsatisfiable (UNSAT). A satisfiable CNF input means that there is
at least one set of assignments for all the literals allowing the entire
input CNF to evaluate to true. Considering the assumptions provided
in the CNF, its satisfiability means that the encoded problem does not
contain any inconsistencies (though it does not necessarily mean that
it is correct). Furthermore, the PicoSAT solver allows for an efficient
oracle to investigate the assignments of the remaining literals, filling
up the remaining cells in the TM. For example, we already know that
R4—A must be a no-trace because it was defined to be false above.
But, what about R4—C or R4—D? Presently both could be either true or
false individually but not both. Yet in the presence of additional input,
this conclusion may no longer be valid and we use the SAT solver as
an oracle to automatically test whether these assignment are valid by
adding yet another clause, one at the time. For example, we would
add CNF A (=R4—C), then separately CNF A (R4—C) to test whether
the CNF is still satisfiable with and without R4—C. If CNF A (R4-C)
was satisfiable, but CNF A (=R4—C) was no longer satisfiable then we
may conclude that (R4—C) must be true and hence a trace - a logical
conclusion of the input provided. The entire procedure of adding a
clause and testing it is done automatically. The UNSAT state of CNF
thus has two interpretations: (1) UNSAT on the input CNF implies that
the input is inconsistent and (2) UNSAT on the oracle CNF implies that
the added clause is no longer feasible. The problematic case is thus
the first one which is discussed next.

5.4. Correct SAT reasoning with Humus

SAT solvers fail if the input CNF is not satisfiable. This is a major
problem here because we expect the different inputs from different
engineers to be inconsistent as a norm and not as an exception. The
question we answer next is how to enable SAT-based reasoning in the
presence of inconsistencies. Nohrer et al. (2012) compared different
isolation strategies for dealing with such inconsistencies. The most
obvious one is MAXSat (Li and Manya, 2009), which identifies a max-
imal subset of the CNF that is still satisfiable. In other words, MAXSat
isolates (i.e., temporarily discards) as many clauses as needed to make
the CNF satisfiable again. The problem that Nohrer et al. also demon-
strated was that such isolation does not ensure correct reasoning
thereafter. The reasons are this: for an inconsistency there must be at
least two contradictory clauses. For example, let us assume another
input that says that A traces to R4, which adds (—input2 v R4—A) to
our CNF:

(—input1 v R4—C v R4—D) A (—input1 v —R4—-A)
A(=input2 v R4—A)

Clearly, the second and third clauses are contradictory - a trivial
observation here. Either the second clause is wrong or the third one
is (or perhaps even both). By isolating any one of the two clauses, the
inconsistency is eliminated and the CNF becomes satisfiable. MAXSat
cannot know which cause is correct and which one is wrong and
it simply makes a random decision that emphasizes the minimum.
It may thus isolate the correct clause (if there is one), leaving the

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192 185

wrong clause in the CNF. The CNF becomes satisfiable but the reason-
ing about traceability in SAT (Section 5.3) would now be affected by
the still present, wrong clause - hence, the reasoning would no longer
be correct.

Addressing the problem of MAXSat, Nohrer et al. (2012) intro-
duced the High Level Union of Minimal Unsatisfiable Sets (HUMUS)
strategy which computes the union of all Minimal Unsatisfable Sets
(MUS) responsible for the CNF to be unsatisfiable. The basic concept
behind it is to isolate all clauses (directly and indirectly) of the in-
consistency and only keep clauses that have no relation to the in-
consistency. Continuing on the example above, HUMUS would isolate
both clauses - (—input1 v —=R4—A) and (—input2 v R4—A) - thus as-
suring that the wrong clause is definitely isolated even though at the
expense of also isolating the correct clause (if there is one). Conse-
quently, the HUMUS isolation ensures correct reasoning about trace-
ability in SAT after isolation - though at the expense of incomplete
reasoning: since HUMUS would isolate both clauses it would also iso-
late the other, presumed correct clause which reduces the CNF and
leads to less complete reasoning. In the most extreme case, HUMUS
would isolate everything if all clauses where directly or indirectly in-
volved in the inconsistency. However, in practice this is not the case
and HUMUS is in fact quite efficient in its isolation - the incomplete-
ness it causes is small and its effect quickly dissipates which we will
discuss further in the evaluation.

The exact functioning of HUMUS is discussed in Nohrer et al.
(2012) but it should suffice to say that HUMUS computes the max-
imal satisfiable set (MSS) which is the opposite of the MUS. The MSS
is the maximal subset of assumptions such that adding any further
assumption would turn a satisfiable CNF into unsatisfiable. On the en-
coding level, HUMUS requires the introduction of additional variables
(literals) in the input CNF, the so called selector variables we intro-
duced earlier. They are used to link each clause to its corresponding
input such that all clauses of an input are isolated at once. For exam-
ple, since (—input1 v —=R4—A) is involved in the inconsistency which
stems from input1, we might also not want to trust the other clause
from input1, namely: (—input1 v R4—C v R4—D). Though not a direct
contributor, it is indirectly related to a clause that needs isolation.
The existence of those selectors do not influence the result of the SAT
reasoning, therefore they are always true prior to inconsistencies. As
HUMUS identifies clauses involved in inconsistencies, these clauses
can then be efficiently isolated by changing their selector variables to
false.

6. Proof of concept tool

Our approach is fully implemented in a tool called TraceAnalyzer
(see screenshot in Fig. 4). This tool is implemented on the Eclipse
platform to offer a familiar user interface for engineers. It allows for
different input views: from the traditional trace matrix (TM) shown
right to the list of inputs shown left. It also lets the engineer investi-
gate the footprint graph (shown at the back), highlights correctness
and granularity problems, and isolates them if desired. The Trace-
Analyzer is built in a modular structure (common eclipse plug-in
structure) that allows different types of reasoning engines to be used
including the business rule engine Drools (DRO, 2014) and the SAT
solver PicoSAT (Biere, 2008). Each of these reasoning engines could
be easily extended by implementing the extension points defined for
traceability reasoning. The extension of Drools engine is as simple as
adding new rules to the existing knowledge base (see example in List-
ing 1). The extension of SAT solver requires more elaboration as an
adaptation of the CNF mapping is needed. Though presently the Pi-
coSAT reasoning engine is superior as was discussed. The validation
next also focuses on this reasoning engine.

It is also noteworthy that TraceAnalyzer supports different gran-
ularity levels: construct level, CEG/AEG level, and RTM cell level. The
engineer could change the granularity level in the standard eclipse

Table 1
Useability experiment case study systems.
CMA Design space Ecco

Language Java Java and C# Java
KLOC 5.6 91 33
Code Elements 158 80 251
Requirements 8 29 33
Size of RTM 1264 2320 8283
Per Subjects
Subjects 2 3 3
Familiarity 40 -95% 70 —95% 50 — 95%
Uncertainty (i) 100% 65 — 100% 75 —90%
TraceAnalyzer
T/N Conflicts 38 453 832
Inconsistencies 28 54 192
Uncertainty (ii) 62.5% 0% 33%

settings. This allowed us to verify our approach on the different lev-
els and assess its performance in best case (construct level) and worst
case (cell level) scenarios.

7. Validation

Our approach deviates strongly from conventional trace capture
approaches and introduces a new paradigm for creating traces. With
our approach, the engineer is allowed to describe his/her knowledge
about traceability between artifacts and code without being bound
to providing complete information or even correct information. The
evaluation thus focuses on four key aspects:

o Usefulness: Do trace uncertainties and inconsistencies exist in
practice and does our approach reduce them?

Correctness : Does our approach reason correctly - even in the
presence of uncertain and erroneous trace input.

Completeness : Does the isolation of erroneous input affect the
completeness of the reasoning (because correct input will be iso-
lated also)?

Scalability: Does our approach scale to large traceability problems
(quadratic growth).

To investigate these aspects, we rely on six case study systems:
three for usefulness and the other three for correctness, complete-
ness, and scalability. Separate case studies were needed for the us-
ability study because of its different prerequisites. The usability study
required immediate access to subjects and case studies to use our lan-
guage. On the other hand, the correctness, completeness, and scala-
bility studies required a gold standard of correct traces to compare
against.

7.1. Usefulness

To assess usefulness, our approach presumes that engineers find
it easier and more intuitive to capture traceability using a language
that has explicit mechanisms for handling uncertainty - mainly be-
cause we presume that each person has an incomplete and pre-
sumably even inconsistent perspective of the traceability of a given
system. To test this basic assumption, we performed a controlled
experiment involving eight subjects and three case study systems
(listed in Table 1). CMA is the configuration management module
in an industrial product implemented in Java. It has eight high level
functional requirements implemented in 158 classes (code elements).
Performing conventional traceability on such a system required engi-
neers to fill in a traceability matrix with 1264 cells (8 requirements
multiplied by 158 code elements). Two software engineers (both em-
ployed by the company building CMA) volunteered to capture this
traceability using our approach. Furthermore, DesignSpace and Ecco

186 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192
S Vo oo v T =©
File Edit Navigate Search Project Editor Menu Sample Run Window Help
{ SR ESB AT T oY Quick Access 5| ¢+Bs
® VoDt 2 =40 5% Outline 82 o m =0
4 Dependencies
id = dep_24 [R1 R3 JisAtleast [AC]
(R1, R3} @ R1 {A C} ! fd:dep_ZS[RZRlB]uExanly[BC]
Y p id = dep_26 [R4 JisAtMost [CD]
4 Source artifacts
e r A
TS~ B
(R2.R3) &) (f2}—-&a b C
il p D
[. ‘i, E
b VoDt 53 .
@R © 2 *
(R2, R3} o ’ J Dimensions ¥ Visualization ¥
r : v
, i sources\targets |R1 lRZ ‘FG |R4
: A T N N N
&® VoDt &2 R4 ——
1 perspective code {A, B, C, D, E}; - B ™ ™ ™ N
2 perspective requirement {R1, R2, R3, R4}; [
4 e N TN T TN
5dependency {R1, R3} atLeast {A, C};
dependency {R2, R3} exactly {B, C}; D ™ N N N
VoDt | T 7 dependency {R4} atMost {C, D};
’ e ™ N N N

o "

VOD.t| Trace Matrix| Footprint Graph

< »

VOD.t Trace Matrix| Footprint Graph

Fig. 4. TraceAnalyzer Screenshots.

are larger research projects developed at the Johannes Kepler Univer-
sity (JKU). There, three graduate students volunteered to capture the
traceability for each system where 29-33 requirements were traced
to 80-251 code elements. The three systems ranged from 5-91 KLOC
in size.

The experiment was structured such that we had at least two sub-
jects per system in order to be able to identify the existence of (a) con-
flicts and (b) the complementary effects of traceability uncertainties
- the basic premise of our approach. Note that uncertainty is an indi-
vidual problem where a subject is unable to identify traceability pre-
cisely. Should uncertainty indeed be a major problem then we ought
to observe this among the eight subjects and the 70 requirements
they investigated. Conflicts and the complementary effects of uncer-
tainties reveal themselves only if multiple subjects capture traceabil-
ity independently of one another. If they do exist then we ought to
observe them among the 11,867 cells that make up the three systems’
RTMs.

We devised a controlled experiment whereby the eight subjects
were asked to recover the traceability of the three case study systems.
The experiment was preceded by a training session of about one hour
to explain the goal of traceability and to teach the uncertainty con-
structs. We answered the questions raised by the participants with-
out biasing their judgment. We encouraged them to be precise and
complete in their assessment but to refrain from guessing answers in
case of uncertainty. We also suggested alternative forms of capturing
traces and even allowed them to come up with their own constructs
if they deem necessary.

After the training session, the experiment started and no further
support was provided. First, the subjects of each case study system
had to work together to identify the requirements and code ele-
ments they would use for the study. In doing so, they identified 8-
33 requirements and 80-251 code elements (depending on the case

Table 2
Correctness, completeness, and scalability case study systems.
ReactOS Gantt JHD

Language C++ Java Java
KLOC 18 41 72
Code elements 239 (C) 2591 (M) 1763 (M)
Requirements 16 18 21
Size of gold standard 3824 46638 37023

study). Each developer then captured the traceability between those
requirements and code elements separately. Finally, we collected the
traceabilty the subjects captured and analyzed them.

We observed that uncertainty was prevalent throughout all three
systems, all eight subjects, and most requirements. Indeed, we found
that each subject had a slightly different understanding of the system
and how it was implemented. Table 2 lists that 65-100% of the re-
quirements captured by the subjects had some uncertainty (i) - that
is the subjects usually could not tell with certainty all the code el-
ements that traced to a given requirement even though all of them
war highly familiar with the system overall (see Familiarity). This
strongly confirms the existence of uncertainty and thus motivates our
approach.

We also analyzed whether subjects contradicted and/or comple-
mented each other in their traceability knowledge. The easiest exam-
ple of a conflict is a direct trace/no-trace conflict (T/N conflict) where
one subject claims a trace between a given requirement and a code
element while another subject does not. Our approach detected be-
tween 38 and 832 such trivial conflicts. However, more important are
the existence of non-trivial inconsistencies (recall 4.4.8). We identi-
fied between 28 and 192 such inconsistencies. This strongly confirms
the need for the error detection mechanism of our approach.

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192 187

Furthermore, we analyzed whether requirements with uncertain-
ties got reduced when combining uncertain input from multiple de-
velopers (recall 4.4.6 and 4.4.7). This is indicated in the Table as
uncertainty (ii) and we see that the uncertainty after applying our
approach was reduced strongly compared to the individual uncer-
tainties that existed beforehand. For example, our approach reduced
the 65-100% uncertainty in the DesignSpace to 0% uncertainty, which
means that all uncertainties were resolved for all requirements. This
confirms the benefits of our approach.

After the experiment a short free-form discussion took place
with each subject individually. Our intent was to ask the subjects
whether they had any traceability knowledge which they could not
express with the constructs provided by our approach. In response to
this question, two developers suggested bi-directional language con-
structs. In the current language, it was only possible to define situa-
tions like: requirement1, requirement2 are at most implemented by
codel, code2, code3 but those two subjects also desired to express re-
verse situations like: code1, code2 are at most implementing require-
ment1, requirement2. This is a legitimate use case that we intend to
address in future work (see Section 9). Furthermore, two subjects re-
ported problems in defining an appropriate level of granularity (re-
call 4.4.9). For the most part, the subjects traced requirements to Java
packages or classes. However, the subjects felt the need to refine the
traceability for certain classes to method to better distinguish their
traceability. This refinement process was not supported and this is
also an interesting use case for future work.

7.2. Correctness, completeness, and scalability

Next, we discuss our approach’s correctness and scalability. We
consider two kinds of input: (1) correct input, which presents a con-
sistent knowledge about a system without any error involved; and (2)
input with incorrectness containing errors. Correct input should not
trigger inconsistencies. Incorrect input may or may not trigger incon-
sistencies and hence may or may not need isolation. For as long as it
is not detected as an inconsistency, it negatively affects the reasoning,
which explains the need to understanding the likelihoods that such
incorrect input remains hidden. But once it is detected, the HUMUS
isolation is guaranteed to isolate it (the proof for this can be found in
Nohrer et al. (2012)). Yet, the isolation may also affect correct input
which reduces the completeness of the reasoning. Hence, the need
for investigating the completeness. In the remainder of this paper we
refer to detected errors as meaning that an inconsistency on cell level
was found.

For understanding correctness, completeness, and scalability, we
draw on another set of case study systems because we require a gold
standard of correct and complete traceability to assess our approach.
For this, we identified three case study systems: Gantt (GAN, 2014),
JHotDraw (JHO, 2014), and ReactOS Explorer (REA, 2014). All three
systems are described in Table 2. Gantt and JHotDraw are open source
programs implemented entirely in Java. The ReactOS Explorer is the
file explorer implemented for ReactOS which is an open source op-
erating system compatible with the Microsoft Windows-NT archi-
tecture and implemented in an object oriented C++ paradigm. We
chose these systems because we had available high quality require-
ment trace matrices (RTM) that contained all the traces between re-
quirements and methods/classes. Each RTM was captured by a key
developer of the system involved which guarantees the best quality
possible. These RTMs are our gold standard which were attentively
created by key developers of the different systems and we believe
that they have the best possible quality for a conventional traceabil-
ity. We use them to assess the results computed by our approach.

The empirical evaluation in Section 7.1 has proven the useful-
ness of our approach on three case study systems (see Table 1).
The focus of the remaining evaluation is thus on correctness, com-
pleteness, and scalability. To explore this, we systematically in-

vestigated all possible uses of our approach by simulating virtual
engineers using our technique on the aforementioned industrial
projects (see Table 2). The intent of the simulation was to demon-
strate that the approach is applicable, functions correctly, and scales
under many different kinds of usage scenarios in context of real
projects. For each of the case study systems we generated input
constructs (implAtLeast, implAtMost ...) based on the correct TMs
we had available for each system. By systematically generating
different combinations of such input constructs we simulated dif-
ferent uses of our technology. This form of evaluation is useful to
adequately answer the research questions laid out above (i.e,. scal-
ability, correctness, likelihoods, or completeness) as we essentially
explore all possible uses. What we cannot show through this eval-
uation is the usefulness of our language (i.e., would engineers pre-
fer to use it over traditional TMs?). However, the intuitiveness of
our language compared to the unnecessary strict TMs suggests that
the language should be useful which is the focus of further user
studies.

Focusing on the key aspects above, we thus generated a large
number of input sets. Each input set had 'n’ input relationships which
consisted of arbitrary ratios of each construct: e.g. we had an input
with 30 relationships that included 10% impINot, 20% implExactly,
30% implAtLeast, 40% implAtMost; or we had input with 100% im-
plExactly. The tricky part of this simulation does not reside in gen-
erating the input itself, but rather systematically varying the ratios in
order to cover all possible usage scenarios. We believe that different
engineers at different states in development are likely to use differ-
ent ratios of our language constructs. E.g., a knowledgeable engineer
is more likely to use implExactly than implAtMost. Some engineer
working on details may not know other parts and may thus be more
likely to use implAtLeast. We thus generated inputs with variations
of: (1) number ‘n’ of constructs, and (2) the ratio ‘r’ of each construct
type in the input. Generating all possibilities results a large number
of inputs and we thus used an automated engine to explore them. For
test purposes, the number of constructs ‘n’ was varied between 30
and 100, and the distribution of ratio ‘r’ will jump by 25%, either by
adding 25% more or less of a given construct type.

Additionally to the variations discussed above, we also studied the
effect of errors on the correctness of the results delivered by our tech-
nique. There is no guarantee that the engineers would have a correct
understanding of a system. For this purpose we use the same inputs
generated by the variation of ‘n’ and ‘r’ as discussed previously and
seeded errors. Like the case study systems, the seeded errors were
not random but based on actual errors we observed with subjects
performing trace capture (Egyed et al., 2010). Our evaluation thus sys-
tematically explores all possible uses of our technology on three real
case studies involving real trace errors observed in practice.

7.2.1. Evaluation with correct input

A correct input is a set of uncertainty constructs describing cor-
rect (though not necessarily complete) traceability knowledge about
a system. In total we generate about 200 different inputs without
seeded errors for each of the three case study systems in the man-
ner discussed above.

7.2.1.1. Completeness of uncertainties. To evaluate the completeness
of our approach, we investigated the degree of traces/no-traces
gained from analyzing uncertainty constructs by the number of RTM
that could be computed compared to the original gold standard RTM.
We refer to this number as cell coverage (the higher, the more com-
plete). Fig. 5 shows the percentages of cell coverage relatively to the
gold standard RTM of each case study system while increasing the
input size. We measure the input size by the number of uncertainty
groups UGs (the set of AEGs and CEGs together because the UG size
corresponds directly to number of clauses in SAT) derived from the
input constructs. We notice the curved nature of the diagrams. It

188 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192

90%
80% g
—_— x X X
70% -
= o x XX
o 60% %
& = X X
g 50% - QZ“
@ 40% N
3 F = 3(>26 X Gantt
< 30% I
= L = 52<X = JHotDraw
20% ¢ + E————
- ReactOS
10% Frp
b
0% T T T T T T "
0 5000 10000 15000 20000 25000 30000 35000
Median #UGs

Fig. 5. Completeness with correct Input.

shows that the cells coverage increases quickly with few uncertainty
constructs. This implies that uncertain input allows us to derive cer-
tain facts quickly and this effect is stronger in the beginning and
slowly reduces. We thus believe that our approach is most useful for
quickly gaining good coverage when brainstorming among engineers.
But as the curve implies, it would be hard to obtain a 100% coverage
through such “guessing”. At a certain level of coverage, it is likely nec-
essary to explore the missing cells and refine them. The completeness
constraints generated by our approach would then be useful to guide
the engineer in resolving the remaining uncertainties.

Fig. 5 presents the mean values of all test inputs generated for each
test case system relatively to the number of UGs. The actual cell cov-
erage percentage varied depending on the type of constructs used in
the input but all exhibited this effect in principle.

7.2.1.2. Correctness. A correct input consists of a set of uncertainty
constructs which are consistent (do not contradict with each other)
and do not contain any wrong assumption about the system which
they are describing. From such a correct input our approach is ex-
pected to only derive correct traces/no-traces but no inconsistencies.
We thus compared our approach’s results with the gold standard to
verify this. In total more than 33 million traces/no-traces relationships
were generated from the 597 inputs and none of them caused any in-
consistencies (i.e., no false inconsistencies). Furthermore, all inputs
were correctly refined by our approach and the generated traces/no-
traces were indeed a subset of the traces/no-traces available in the
original gold RTM (subset because none of the n input allowed for a
complete generation of the gold matrix). The very large number of in-
put and trace/no-trace comparisons with the gold standard does not
guarantee correctness but strongly supports our claim that the ap-
proach functions correctly in the presence of correct input (incorrect
input is discussed below).

7.2.1.3. Scalability. The performance and scalability of a system is
best measured by the throughput (size of the handled problem) and
the time required for the operation. Fig. 6 shows the performance
of TraceAnalyzer on test inputs generated for each of our test case
systems (Gantt, JHotDraw, and ReactOS Explorer). The input size was
again measured by the number of uncertainty groups (UGs) at the
x-axis and the runtime in milliseconds at the y-axis. For the sake
of brevity we limited the displayed data to test inputs with high-
est number of UGs which are most meaningful for performance and
scalability measurement. Each data point in the diagram presents the
time (milliseconds in the y-axis) consumed by our tool to analyze a
set of constructs (input) with the corresponding problem size (num-
ber of UGs in the x-axis). The time appears to grow strongly initially
with few UGs and then flats off quickly with increasing UGs (larger
SAT problems). We believe this is a reflection of the fact that little in-
put allows for many possible interpretations which are computation-

1000
900

800

00 o5 X

7

F X = X XXX

@ 600 [F— P < X

T hazad X X X

£ o - Su..2

g 400 < — —

5 300 FEAN — X X Gantt —
200 JHotDraw [
100 % <+ ReactOS —

0
0 20000 40000 60000 80000 100000 120000 140000

Input Size: # AGs

Fig. 6. Scalability with correct Input.

ally expensive to explore whereas more input implies more certainty
and hence is faster to explore. Some outliers are visible in the figure
but they are very few and they do not deviate very much from the
general performance observed. The time required by the TraceAna-
lyzer to analyze and derive all the possible traces/no-traces is always
under one second even with inputs containing more than 100.000
UGs, which shows that our approach is very scalable on correct in-
puts. Such a short reasoning time allows us to get a very fast response
time in TraceAnalyzer, and thus we get an instant feedback about the
set of uncertainty constructs that we are writing into the tool.

It is important to note that our approach is incremental: i.e. adding
or retracting a construct to/from an analyzed input would not trig-
ger a complete new analysis from scratch because TraceAnalyzer will
add/retract the needed information for reasoning to/from the exist-
ing information from previous reasoning. This significantly reduces
the runtime performance of the reasoning engine (incremental rea-
soning).

While we appear to observe a linear behavior of the execution
time based on batch evaluations, we found that our approach per-
forms much faster if relationships are added incrementally (data
omitted for brevity). The incremental nature of our approach intro-
duces more flexibility for the engineer. As a main benefit, we name
the fact that the engineer is not obliged to run the entire analysis af-
ter each change s/he makes. TraceAnalyzer will detect the changes
and rerun the analysis incrementally for the changed input only.

7.2.2. Evaluation with partially incorrect input

As was explained above, an erroneous input is likely in traceabil-
ity. An incorrect input about a system should lead to an inconsistency
which is reported back to the engineer once detected. Every inconsis-
tency should be tracked back to its origins and the exact constructs
responsible for it should be determined. Correctly understanding the
incorrectness is not only important for the reporting to the user but
also for isolating its effect to ensure correct reasoning. The engineer
may fix the inconsistency right away if she/he has the correct knowl-
edge. Or the engineer could let our approach isolate the inconsistency
and continue reasoning about the rest of the input.

Inconsistencies in the input imply incorrect traceability knowl-
edge. Consistent input does not necessarily imply correctness. Our
approach is vulnerable to incorrect but consistent input (as are proba-
bly most software engineering techniques today). If the engineer pro-
vides an incorrect, but consistent input, our approach would not be
able to detect any inconsistencies and it would generate traces/no-
traces based on that incorrect input. However we find that trace
capture is generally a task that multiple engineers have to perform
and herein lies the strengths of our approach. Incorrect but consis-
tent input is increasingly unlikely with increasing number of engi-
neers involved. As a result, we expect input inconsistencies to be
likely in larger projects and our approach will detect such inconsis-
tencies and notify the responsible engineers. There is unfortunately

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192 189

90000

80000 * Gantt
=JHotDraw

& 70000
+ ReactOS

[}
o
=]
=]
o

50000

0000

w s
|

0000
2 - - X

20000

Detecting Error after #U

10000 < -

0% 20% 40%

60% 80% 100%
Inserting Error at % of total UGs

Fig. 7. Input Size to Detecting Errors.

no study about how these errors are distributed or in which kind of
relationship are they more likely. However, we previously did per-
form a controlled experiment where we let engineers recover traces
for our three case study systems and (Egyed et al., 2010) and we thus
had available a large set of data on real artifact to code traces that
contained many errors (when compared to the gold RTM). We thus
injected those erroneous traces into the otherwise correct inputs we
used in the above validation - in total we generated 354 inputs with
errors.

7.2.2.1. Likelihood of error detection. Not surprisingly, we found that
the more input is provided the more likely an inconsistency is de-
tected. We observed this behavior by computing the Detection De-
lay¥ between injecting an error and detecting it. Fig. 7 summarizes
our findings. The x-axis depicts the size of the input (percentage of
UGs from the their total number for each input) when injecting an er-
ror and the y-axis depicts how many more UGs were needed until the
inconsistency was detected. Obviously the errors which are injected
at the beginning, when the input is still small, stay undetected for a
while until a considerable number of UGs is added. But when the er-
ror is injected at a point where many UGs already existed then it gets
detected very quickly. This can be seen at the right of Fig. 7 where
the number of UGs required until detecting an error becomes almost
equal to zero. This observation confirms our previous argument that
with increasing quantity of input it becomes increasingly unlikely
that an input containing errors remains consistent, especially if the
input is provided by different engineers.

7.2.2.2. Completeness of reasoning in the presence of erroneous input.
Being able to detect inconsistencies is important for correct reason-

% of Input Size
0% 20% 40% 60% 80% 100%
0 ===

-5 91X Gantt

" |=JHotDraw

of isolated cells

|+ Reactos

(a) Median Isolated Cells

ing in the presence of inconsistencies. Recall that our approach is able
to do so once the inconsistency is encountered - in which case, the
isolation will eliminate the inconsistency conservatively by eliminat-
ing all clauses that contributed to it and thereby any/all errors. Previ-
ously, in Fig. 5 we showed that the amount of traces/no-traces covered
rises very quickly at the beginning of the input and it flattens with
increasing input. It stands to reason that by removing some input,
the effect should be little compared to the size of the totally com-
puted traces. Fig. 8 shows the difference of the coverage of the RTM
cells gained from analyzing test inputs containing incorrectness com-
pared to correct input. Every scatter in the diagram shows the aver-
age number of RTM cells (over all test inputs for each system) com-
pared to the original covered cells when the input did not contain
any errors. The percentage of the input size designates the number
of constructs which are already analyzed by our tool. Fig. 8a shows
the median number of cells lost in all our test inputs. The Fig. 8b on
the right shows the maximum number of cells isolated in all our test
inputs. The negative number of cells means that the input containing
incorrectness covered less cells in the RTM than the correct input. We
see that this number is very small and cover typically 10 cells or less.
Compared to the total number of cells, the isolation thus affects <1%.

7.2.2.3. Correctness of reasoning with erroneous input. We argued that
the HUMUS isolation is comprehensive. Thus, after the isolation, the
approach is supposed to yield a less complete but correct RTM. The
previous section demonstrated that the effect on completeness is
very small. To test the correctness, we seeded single errors in inputs
such that a detected inconsistency and isolation should eliminate the
error always. We then compared the RTM after the isolation with the
gold RTM to test the correctness of the reasoning and found that our
approach was always correct after isolation. In the cases were our ap-
proach was not able to detect an inconsistency; we obviously could
not detect the injected error. There was little benefit in measuring
this error as virtually all software engineering approaches are sus-
ceptible to problems of undetected, incorrect input. However, as we
already discussed above, the likelihood of an error remaining unde-
tected decreases over time.

7.2.2.4. Scalability. The input with incorrectness requires more com-
putational time because of the additional HUMUS computation to
isolate the inconsistency. When HUMUS detects an inconsistency in
the input, it does isolate the responsible input constructs. At any point
of the reasoning, the isolation means two tasks: (1) all the reasoning
parts, which are already computed based on those inconsistent con-
structs, should be rolled back; and (2) no further reasoning is allowed
to take those inconsistent constructs into account. Fig. 9 shows the

% of Input Size
0% 20% 40% 60% 80% 100%
(VI o o o o o o
-1 e
-2 =+
-3 T——2000006¢
4 000000000

of isolated cells
&
1

X Gantt —
-6 1 JHotDraw baas
71 + ReactOS a
-8
-9 A
-10 t

(b) MaximumIsolatedCells

Fig. 8. Completeness with Incorrect Input.

190 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192

12000

e
10000
XX X
X
% %)@()2(% X %X

g

g 8000

2 x 5K %

E & N

E 6000 SR

L

E

2 x Gantt —
5

o

JHotDraw

+ ReactOS

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Input Size: # AGs

Fig. 9. Scalability with Incorrect Input.

time required to run the erroneous inputs. The maximum time re-
quired has increased from less than 1 s (see Fig. 6) to more than 10 s.
Compared to correct test inputs, the total time needed for reasoning
increases significantly, but we believe that this amount of time is still
acceptable because it is a onetime cost. After isolation, the input is
consistent again and the subsequent cost is the same as the reason-
ing without error (Section 7.2.1.3). The incremental nature of our ap-
proach makes it highly scalable even though the total time consumed
to analyze an entire input has increased. Our approach requires more
time to reason about uncertainty constructs which are in contradic-
tion with other constructs. But in practice the engineer will feed the
tool incrementally with single constructs and only when she/he adds
an inconsistency then the tool would take few seconds to identify,
isolate, and return a feedback, which is still an acceptable user expe-
rience. Again, we note that the computational time increases sharply
for few UGs and flattens with increasing UGs. We thus do not expect
that the computational cost will increase much further with larger
case studies.

8. Threats to validity

Our approach is able to detect incorrect input. However, here a
thread to validity is our assumption that incorrect input coincides
with contradictory input. This must not be case always. For example,
if two engineers have a wrong but consistent understand of the trace-
ability of the system then out approach would not identify inconsis-
tencies. Our approach is thus vulnerable to this problem which would
limit its usefulness despite its rigor. Our approach is intuitive and
caters to obvious uncertainties that an engineer would really have.
However, here again we learned from the aforementioned controlled
experiments (Egyed et al., 2010). While there were few hotspots
where engineers tend to err consistently, most errors where isolated
and engineers often had contradictory understandings (i.e., when-
ever multiple engineers investigated the same cell of a trace matrix
then there typically where inconsistent opinions). This strongly sup-
ports our argument that incorrect but consistent input is possible but
not common.

Another thread to validity is that we did not consider the cost of
capturing traceability. Traceability is useful only if the cost of cap-
turing traceability is less than the benefits of using it. However, this
cost/benefit question is not specific about our approach but rather
about traceability as a whole. Unfortunately, today we have no effec-
tive benchmarks to assess cost/benefit trade-offs in traceability be-
cause the uses of traceability are diverse and no studies exist that
cover the cost. However, the perceived benefits are strong enough for
existing standards (CMM, FAA) to mandate traceability. Our approach
does not change the basic complexity of traceability (n?) and it was
not meant to be a mechanism for saving cost. The key question is thus
whether our approach makes trace capture more complex than sim-
ply filling in a trace matrix. Here we see no reason that this should be

the case either. After all, there is also the cost of wrong traceability
to consider. If engineers are not able to separate precise from uncer-
tain knowledge then engineers may fail to capture some traceability
(incompleteness) or make arbitrary decisions with others (incorrect-
ness). Neither is beneficial and our approach at least avoids those and
their subsequent problems. So while the approach may not be a cost
benefit itself, it is not a loss either and the more accurate reflection of
traceability should benefit downstream uses.

The introduction also motivated the role of evolution in keeping
traces complete and correct. Yet we did not consider evolutionary
change to traceability explicitly. This is true but we believe that evo-
lutionary changes are simply input changes and can be handled like
any new/changed input. However, evolutionary changes have the risk
of not having been applied consistently and, in such cases, our ap-
proach should detect inconsistencies. Hence, the evaluation with par-
tially incorrect input was also an evaluation of evolutionary changes
carried out inconsistently. Here the incorrect input would refer to
older, outdated input that is now inconsistent with newer, evolved
input.

Finally, the evaluation in this work focused entirely on require-
ments to code traces and not arbitrary artifacts. Yet, the problem of
filling in a trace matrix is the same regardless of artifact type and we
see no reason why the results ought to differ from, say, models. Again,
merely the usefulness could be different though for assessing that we
would need more user studies as was already discussed. On a smaller
scale, we did validate models as well (Ghabi and Egyed, 2012) but we
lack large data sets for a systematic comparison. This is also a focus of
future work.

9. Future work

We validated our approach using automatically generated tests
covering most possible combinations of correct inputs and inputs
containing errors. We believe that such a validation is useful to as-
sess scalability, correctness, and completeness. Furthermore we con-
ducted a user experiment which confirm the usefullness of our ap-
proach. It would also be interesting to see whether our approach
could be a complement to other trace capture techniques such as
information retrieval (IR) (Cleland-Huang et al., 2007; Duan and
Cleland-Huang, 2007) which are known to contain many erroneous
findings. These are future work but it should be noted that the need
for a better language is not only motivated by our useability study but
also by a series of experiments (Egyed et al., 2010; Mdder and Egyed,
2012) where it was observed that engineers often have difficulties
in correctly and completely identifying traces. The present language
is the result of several years of observations involved both experi-
enced and inexperienced subjects. The key observation is that a trace
matrix is not an ideal medium for capturing traceability. Our lan-
guage is meant to be the beginning. As two subjecs in our useability
study suggested, other constructs could be useful also. For instance
two developers requested having the constructs defined in both di-
rections: from requirements to code and from code to requirements,
which is not supported at the moment. As part of our future work,
we intend to conduct a more elaborate experiment on a longer span
of time with more participants. The partner company implementing
CMA will continue to use our approach.

10. Related work

Research on traceability has progressed significantly and re-
searchers have been developing automated approaches that go far
beyond simple “recording and replaying” of trace links (which is
still the level of support in many commercial tools). One of the
earliest technologies for recovering requirements to code traces
is information retrieval (IR) (Cleland-Huang et al., 2007; Duan
and Cleland-Huang, 2007) which identifies trace links based on

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192 191

naming similarities. Today, however, the traceability research goes
beyond requirements-to-code traceability. There are many other
kinds of approaches for the recovery of different types of trace links
such as code and models (Antoniol, 2001; Egyed and Grunbacher,
2002; Murphy et al., 1995), code and documentation (Marcus and
Maletic, 2003), architecture and test cases (Muccini et al., 2004),
architecture and code (Murta et al., 2008), or features and code
(Dagenais et al., 2007)]. Researchers have proposed various tech-
niques and heuristics to support the automation of trace recovery.
Examples include event-based approaches (Cleland-Huang et al.,
2003), information retrieval (Cleland-Huang et al., 2007; Duan and
Cleland-Huang, 2007), feature location techniques (Koschke and
Quante, 2005), process-oriented approaches (Pohl, 1996) scenario-
based techniques (Egyed, 2003), or rule-based methods (Spanoudakis
et al., 2004). This list of technologies recovers certain types of traces,
for certain types of artifacts, at certain times. Although advances
have been made to automatically recover links, trace capture remains
a human-intensive activity (Gotel and Finkelstein, 1994; Lindvall and
Sandahl, 1996; Neumuller and Grunbacher, 2006) The approaches of
Haumer et al. (1999), Jackson (1991), and Cox et al. (2001) constitute
a small sample of manual traceability techniques. Some of them infer
traces based on keywords whereas others use a rich set of media (e.g.,
video, audio, etc.) to capture and maintain trace rationale. Concept
analysis has been used in concert with manual input to provide
a structured way of grouping traces. These groupings can then be
formed into a concept lattice that is similar in nature to our footprint
graph - but not as scalable (Koschke and Quante, 2005). Pinheiro
and Goguen (1996) approached traceability by devising an elaborate
network of trace dependencies and transitive rules among them
to support requirements traceability. Their approach, called TOOR,
addresses traceability by reasoning about technical and social factors.
Their approach emphasizes on requirements. Antoniol et al. discuss
a technique for automatically recovering traceability links between
object-oriented design models and code based on determining the
similarity of paired elements from design and code (Antoniol, 2001).
Spanoudakis et al. (2004) have contributed a rule-based approach
for automatically generating and maintaining traceability relations
(between organizational models specified in ix and software systems
models represented in UML). In the goal-centric traceability (GCT)
approach, Cleland-Huang et al. model non-functional requirements
and their interdependencies as soft-goals in an Interdependency
Graph. In their approach a probabilistic network model is used to
retrieve links between classes affected by a functional change and
elements within the graph (Cleland-Huang et al., 2007). A forward
engineering approach is taken by Richardson and Green (2004) in the
area of program synthesis. Traceability relations are automatically
derived between parts of a formal specification and parts of the
synthesized program.

This proposed work is not the first work that recognizes the value
in combining model dependencies (some limited types thereof)
(Cleland-Huang et al., 2005; Eaddy et al., 2008). However, to the best
of our knowledge thus far nobody has tried to integrate and reason
about many dimensions of model dependencies in such a rigorous,
formal, and precise manner as we are proposing here. Also, the issues
of uncertainties discussed in this work have not been explored in
related work to the best of our knowledge. It is also important to
note that traceability approaches typically do not provide explicit
support for trace utilizations such as impact or coverage analysis.
They rather provide general purpose features to create reports or
query traceability information. Researchers have been proposing
techniques to improve support for important tasks such as analyzing
change impacts (Abbattista et al., 1994; Briand et al., 2003; Lee et al.,
2000; Tonella, 2003) or understanding the conflict and coopera-
tion among requirements (Egyed and Grunbacher, 2004). There is
however very little literature on the quality implications of trace
links during such utilizations. As elsewhere, the utility of trace links

decreases when the trace quality decreases. However, today, we have
no understanding on how strong this effect is.

11. Conclusion

This paper presented an extension to our approach to trace dis-
covery and validation. Our approach expects the engineer to define
assumptions on artifact-to-code traces (with incompleteness and un-
certainties) and it then analyzes the correctness of these assumptions
and is capable of resolving uncertainties. It must be noted that our
approach does not “invent” traces. It discovers them based on the
logical consequences of the assumptions provided. The ability to de-
tect incorrectness shields the engineer from making errors. This is
particularly important if the input was generated “after the fact” (af-
ter key people have moved on or may have forgotten vital details), if
the input was generated by different people (with inconsistent inter-
pretations of traces), or if legacy traceability was reused (previously
generated but no longer up-to-date) - as is typical during software
maintenance.

Acknowledgement

We gratefully acknowledge funding from the Austrian Science
Fund (FWF): P 23115-N23.

References

Drools, http://www.jboss.org/drools/. (Online; accessed 21.01.14) (2014).

Gantt Project, http://www.ganttproject.biz/. (Online; accessed 21.01.14). (2014).

JHotDraw, http://www.jhotdraw.org/. (Online; accessed 21.01.14). (2014).

ReactOS, http://www.reactos.org/. (Online; accessed 21.01.14). (2014).

Abbattista, F,, Lanubile, F., Mastelloni, G., Visaggio, G., 1994. An experiment on the effect
of design recording on impact analysis. In: Proceedings of the International Con-
ference on Software Maintenance, pp. 253-259. doi:10.1109/ICSM.1994.336769.

Antoniol, G., 2001. Design-code traceability recovery: selecting the basic link-
age properties. Sci. Comput. Program. 40 (2-3), 213-234. doi:10.1016/S0167-
6423(01)00016-8.

Bianchi, A., Fasolino, A. Visaggio, G., 2000. An exploratory case study of the
maintenance effectiveness of traceability models. In: Proceedings 8th Interna-
tional Workshop on Program Comprehension. Limerick, Ireland, pp. 149-158.
doi:10.1109/WPC.2000.852489.

Biere, A., 2008. Picosat essentials. In: Journal on Satisfiability, Boolean Modeling and
Computation (JSAT), 4. Delft University, pp. 75-97.

Briand, L., Falessi, D., Nejati, S., Sabetzadeh, M., Yue, T., 2014. Traceability and SysML
design slices to support safety inspections: a controlled experiment. ACM Trans.
Softw. Eng. Methodol. 23 (1), 9:1-9:43. doi:10.1145/2559978.

Briand, L.C., Labiche, Y., O’Sullivan, L., 2003. Impact analysis and change management
of UML models. In: Proceedings of the International Conference on Software Main-
tenance. IEEE Computer Society, Washington, DC, USA, p. 256.

Briand, L.C., Labiche, Y., O’Sullivan, L., SAswka, M., 2006. Automated impact analysis of
UML models. J. Syst. Softw. 79 (3), 339-352. doi:10.1016/j.js5.2005.05.001.

Clarke, S., Harrison, W., Ossher, H., Tarr, P., 1999. Subject-oriented design: towards im-
proved alignment of requirements, design, and code. SIGPLAN Not. 34 (10), 325-
339. doi:10.1145/320385.320420.

Cleland-Huang, J., Chang, C., Christensen, M., 2003. Event-Based traceability for
managing evolutionary change. IEEE Trans. Softw. Eng. 29 (9), 796-810.
doi:10.1109/TSE.2003.1232285.

Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S., 2005.
Goal-centric traceability for managing non-functional requirements. In: Proceed-
ings. 27th International Conference on Software Engineering, ICSE, pp. 362-371.
doi:10.1109/ICSE.2005.1553579.

Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., Clark, S., 2007. Best practices
for automated traceability. Computer 40 (6), 27-35. doi:10.1109/MC.2007.195.

Cox, L., Harry, D., Skipper, D., Delugach, H.S., 2001. Dependency analysis using con-
ceptual graphs. In: Proceedings of the 9th International Conference on Conceptual
Structures, ICCS 2001. Springer, pp. 117-130.

Dagenais, B., Breu, S., Warr, F, Robillard, M., 2007. Inferring structural patterns for
concern traceability in evolving software. In: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering. ACM,
New York, NY, USA, pp. 254-263. doi:10.1145/1321631.1321669.

Dohyung, K., Java MPEG player. http://peace.snu.ac.kr/dhkim/java/MPEG/.

Duan, C,, Cleland-Huang, J., 2007. Clustering support for automated tracing. In: Pro-
ceedings of the 22nd IEEE/ACM international conference on Automated software
engineering. ACM, New York, NY, USA, pp. 244-253. doi:10.1145/1321631.1321668.

Eaddy, M., Aho, A., Antoniol, G., Guéhéneuc, Y., 2008. CERBERUS: tracing requirements
to source code using information retrieval, dynamic analysis, and program analy-
sis. In: The 16th IEEE International Conference on Program Comprehension. Ams-
terdam, The Netherlands, pp. 53-62. doi:10.1109/ICPC.2008.39.

http://dx.doi.org/10.13039/501100002428
http://www.jboss.org/drools/
http://www.ganttproject.biz/
http://www.jhotdraw.org/
http://www.reactos.org/
http://dx.doi.org/10.1109/ICSM.1994.336769
http://dx.doi.org/10.1016/S0167-6423(01)00016-8
http://dx.doi.org/10.1109/WPC.2000.852489
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0004
http://dx.doi.org/10.1145/2559978
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0005
http://dx.doi.org/10.1016/j.jss.2005.05.001
http://dx.doi.org/10.1145/320385.320420
http://dx.doi.org/10.1109/TSE.2003.1232285
http://dx.doi.org/10.1109/ICSE.2005.1553579
http://dx.doi.org/10.1109/MC.2007.195
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0011
http://dx.doi.org/10.1145/1321631.1321669
http://peace.snu.ac.kr/dhkim/java/MPEG/
http://dx.doi.org/10.1145/1321631.1321668
http://dx.doi.org/10.1109/ICPC.2008.39

192 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178-192

Egyed, A., 2003. A Scenario-Driven approach to trace dependency analysis. IEEE Trans.
Softw. Eng. 29 (2), 116-132. doi: 10.1109/TSE.2003.1178051.

Egyed, A., 2004. Resolving uncertainties during trace analysis. In: Proceedings of the
12th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering. ACM, New York, NY, USA, pp. 3-12. doi:10.1145/1029894.1029899.

Egyed, A., Biffl, S., Heindl, M., Griinbacher, P., 2005. Determining the cost-quality trade-
off for automated software traceability. In: Proceedings of the 20th IEEE/ACM In-
ternational Conference on Automated Software Engineering. ACM, New York, NY,
USA, pp. 360-363. doi:10.1145/1101908.1101970.

Egyed, A., Graf, F, Griinbacher, P., 2010. Effort and quality of recovering requirements-
to-code traces: Two exploratory experiments. In: Requirements Engineering Con-
ference (RE), 18th IEEE International. Sydney, NSW, pp. 221-230.

Egyed, A., Grunbacher, P, 2002. Automating requirements traceability: beyond the
record & replay paradigm. In: 17th IEEE International Conference on Automated
Software Engineering. [EEE, pp. 163-171. doi:10.1109/ASE.2002.1115010.

Egyed, A., Grunbacher, P., 2004. Identifying requirements conflicts and cooperation:
how quality attributes and automated traceability can help. Software, IEEE 21 (6),
50-58. doi:10.1109/MS.2004.40.

Ghabi, A., Egyed, A., 2012. Exploiting traceability uncertainty between architectural
models and code. In: Joint Working IEEE/IFIP Conference on Software Architecture
(WICSA) and European Conference on Software Architecture (ECSA), pp. 171-180.
doi:10.1109/WICSA-ECSA.212.25.

Gotel, O., Finkelstein, C., 1994. An analysis of the requirements traceability problem. In:
Proceedings of IEEE International Conference on Requirements Engineering. Col-
orado Springs, COUSA, pp. 94-101. doi:10.1109/ICRE.1994.292398.

Haumer, P, Pohl, K., Weidenhaupt, K., Jarke, M., 1999. Improving reviews by extended
traceability. In: Systems Sciences, 1999. HICSS-32. Proceedings of the 32nd Annual
Hawaii International Conference on, Track3, p. 10. doi: 10.1109/HICSS.1999.772891.

Jackson, J., 1991. A keyphrase based traceability scheme. In: IEE Colloquium on Tools
and Techniques for Maintaining Traceability During Design, pp. 2/1-2/4.

Koschke, R., Quante,]., 2005. On dynamic feature location. In: Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering. Long
Beach, CA, USA, p. 86. doi:10.1145/1101908.1101923.

Lee, M., Offutt, A., Alexander, R., 2000. Algorithmic analysis of the impacts of changes
to Object-Oriented software. In: Proceedings of the Technology of Object-Oriented
Languages and Systems (TOOLS 34’00). [EEE Computer Society, Washington, DC,
USA, p. 61.

Li, C.M., Manya, F.,, 2009. MaxSAT, Hard and Soft Constraints. In: Handbook of Satisfia-
bility. I0S Press, pp. 613-631.

Lindvall, M., Sandahl, K., 1996. Practical implications of traceability. Softw.: Pract.
Exp. 26 (10), 1161-1180. doi:10.1002/(SICI)1097-024X(199610)26:10<1161::AID-
SPE58>3.0.C0;2-X.

Mader, P., Egyed, A., 2011. Do software engineers benefit from source code navigation
with traceability? an experiment in software change management. In: Proceedings
of the 26th I[EEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2011, pp. 444-447. doi:10.1109/ASE.2011.6100095.

Mader, P, Egyed, A., 2012. Assessing the effect of requirements traceability for soft-
ware maintenance. In: 28th IEEE International Conference on Software Mainte-
nance ICSM, Trento, Italy, pp. 171-180. doi:10.1109/ICSM.2012.6405269.

Marcus, A., Maletic, J.I., 2003. Recovering documentation-to-source-code traceability
links using latent semantic indexing. In: Proceedings of the 25th International Con-
ference on Software Engineering. IEEE Computer Society, Washington, DC, USA,
pp. 125-135.

Muccini, H., Inverardi, P., Bertolino, A., 2004. Using software architecture for code test-
ing. [EEE Trans. Softw. Eng. 30 (3), 160-171. doi:10.1109/TSE.2004.1271170.

Murphy, G.C., Notkin, D., Sullivan, K., 1995. Software reflexion models: bridging the
gap between source and high-level models. In: Proceedings of the 3rd ACM SIG-
SOFT symposium on Foundations of software engineering. ACM, New York, NY,
USA, pp. 18-28. d0i:10.1145/222124.222136.

Murta, L.G., Hoek, A., Werner, C.M., 2008. Continuous and automated evolution of
architecture-to-implementation traceability links. Automated Software Engg. 15
(1), 75-107. doi:10.1007/s10515-007-0020-6.

Neumuller, C., Grunbacher, P, 2006. Automating software traceability in very
small companies: a case study and lessons learned. In: 21st IEEE/JACM In-
ternational Conference on Automated Software Engineering, pp. 145-156.
doi:10.1109/ASE.2006.25.

Nohrer, A., Biere, A., Egyed, A., 2012. Managing SAT inconsistencies with HUMUS. In:
VaMos, pp. 83-91.

Parnas, D.L,, 1972. On the criteria to be used in decomposing systems into modules.
Commun. ACM 15 (12), 1053-1058. doi: 10.1145/361598.361623.

Pinheiro, FA.C., Goguen, J.A., 1996. An Object-Oriented tool for tracing requirements.
IEEE Softw. 13 (2), 52-64. doi:10.1109/52.506462.

Pohl, K., 1996. PRO-ART: enabling requirements pre-traceability. In: Proceedings of
the Second International Conference on Requirements Engineering, pp. 76-84.
doi:10.1109/ICRE.1996.491432.

Richardson,]., Green, J., 2004. Automating traceability for generated software arti-
facts. In: Proceedings of the 19th IEEE international conference on Automated
software engineering. IEEE Computer Society, Washington, DC, USA, pp. 24-33.
doi:10.1109/ASE.2004.20.

Spanoudakis, G., Zisman, A., Perez-Mifiana, E., Krause, P, 2004. Rule-based gen-
eration of requirements traceability relations. J. Syst. Softw. 72 (2), 105-127.
doi:10.1016/S0164-1212(03)00242-5.

Tonella, P, 2003. Using a concept lattice of decomposition slices for program
understanding and impact analysis. IEEE Trans. Softw. Eng. 29 (6), 495-5009.
http://doi.ieeecomputersociety.org/10.1109/TSE.2003.1205178.

Achraf Ghabi M.Sc received his B.S. degree in 2008 and
his M.Sc. degree in 2011 in Computer Science both from
Johannes Kepler University, Linz, Austria. He is currently a
Ph.D. Candidate at the Institute for Software Systems Engi-
neering at the Johannes Kepler University under the men-
torship of Prof. Dr. Alexander Egyed. His research interests
include requirements engineering, traceability, and change
impact analysis.

Prof. Dr. Alexander Egyed heads the Institute for Software
Systems Engineering at the Johannes Kepler University, Aus-
tria. He is also an Adjunct Assistant Professor at the Univer-
sity of Southern California, USA. Before joining the JKU, Dr.
Egyed worked as a Research Scientist for Teknowledge Cor-
poration, USA (2000-2007) and then as a Research Fellow at
the University College London, UK (2007-2008). Dr. Egyed
received a Doctorate degree in 2000 and a Master of Science
degree in 1996, both in Computer Science, from the Univer-
sity of Southern California, USA under the mentorship of Dr.
Barry Boehm. His research interests include software design
modeling, requirements engineering, consistency checking
and resolution, traceability, and change impact analysis.

http://dx.doi.org/10.1109/TSE.2003.1178051
http://dx.doi.org/10.1145/1029894.1029899
http://dx.doi.org/10.1145/1101908.1101970
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0018
http://dx.doi.org/10.1109/ASE.2002.1115010
http://dx.doi.org/10.1109/MS.2004.40
http://dx.doi.org/10.1109/WICSA-ECSA.212.25
http://dx.doi.org/10.1109/ICRE.1994.292398
http://dx.doi.org/10.1109/HICSS.1999.772891
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0024
http://dx.doi.org/10.1145/1101908.1101923
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0027
http://dx.doi.org/10.1002/(SICI)1097-024X(199610)26:10<1161::AID-SPE58>3.0.CO;2-X
http://dx.doi.org/10.1109/ASE.2011.6100095
http://dx.doi.org/10.1109/ICSM.2012.6405269
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0031
http://dx.doi.org/10.1109/TSE.2004.1271170
http://dx.doi.org/10.1145/222124.222136
http://dx.doi.org/10.1007/s10515-007-0020-6
http://dx.doi.org/10.1109/ASE.2006.25
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0036
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1109/52.506462
http://dx.doi.org/10.1109/ICRE.1996.491432
http://dx.doi.org/10.1109/ASE.2004.20
http://dx.doi.org/10.1016/S0164-1212(03)00242-5
http://doi.ieeecomputersociety.org/10.1109/TSE.2003.1205178

	Exploiting traceability uncertainty among artifacts and code
	1 Introduction
	2 Illustration
	3 Artifacts and code relationships
	4 Language for expressing traceability
	4.1 Precise trace information
	4.2 Expressing uncertainty
	4.3 Language for expressing uncertainty
	4.4 Defining common uncertainty constructs
	4.4.1 ImplAtLeast input
	4.4.2 ImplAtMost input
	4.4.3 ImplNot input
	4.4.4 ImplExactly input
	4.4.5 Footprint graph
	4.4.6 Propagation rules for reducing uncertainty
	4.4.7 Propagation rules for suggesting trace
	4.4.8 Consistency constraints
	4.4.9 Granularity constraints
	4.4.10 Completeness constraints

	5 Encoding and correct reasoning
	5.1 Encoding traceability language in drools
	5.2 Encoding traceability language in SAT
	5.3 Reasoning about traceability in SAT
	5.4 Correct SAT reasoning with Humus

	6 Proof of concept tool
	7 Validation
	7.1 Usefulness
	7.2 Correctness, completeness, and scalability
	7.2.1 Evaluation with correct input
	7.2.2 Evaluation with partially incorrect input

	8 Threats to validity
	9 Future work
	10 Related work
	11 Conclusion
	 Acknowledgement
	 References

