
The Journal of Systems and Software 108 (2015) 178–192

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Exploiting traceability uncertainty among artifacts and code

Achraf Ghabi∗, Alexander Egyed

Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria

a r t i c l e i n f o

Article history:

Received 14 April 2014

Revised 29 May 2015

Accepted 16 June 2015

Available online 26 June 2015

Keywords:

Traceability

Artifacts to code mapping

Analysis

a b s t r a c t

Traceability between software development artifacts and code has proven to save effort and improve quality.

However, documenting and maintaining such traces remains highly unreliable. Traceability is rarely captured

immediately while artifacts and code co-evolve. Instead they are recovered later. By then key people may

have moved on or their recollection of facts may be incomplete and inconsistent. This paper proposes a lan-

guage for capturing traceability that allows software engineers to express arbitrary assumption about the

traceability between artifacts and code – even assumptions that may be inconsistent or incomplete. Our ap-

proach takes these assumptions to reasons about their logical consequences (hence increasing completeness)

and to reveal inconsistencies (hence increasing correctness). In doing so, our approach’s reasoning is correct

even in the presence of known inconsistencies. This paper demonstrates the correctness and scalability of

our approach on several, large-scale third-party software systems. Our approach is automated and tool sup-

ported.

© 2015 Elsevier Inc. All rights reserved.

d

(

t

G

e

i

m

c

g

t

i

p

c

i

r

a

p

n

c

(

m

n

t

1. Introduction

Traceability is very important during software development, es-

pecially for change impact analysis (Briand et al., 2006; Mäder and

Egyed, 2011) during the maintenance stage (Haumer et al., 1999). Em-

pirical evidence suggests that requirements to code traces can make

bug fixes and features extensions 20–30% faster and over 50% more

correct (Briand et al., in press; Mäder and Egyed, 2011). These ben-

efits are substantial and accentuate that traceability should play a

major role in the software engineering life cycle. Existing commer-

cial tools typically support the recording of traces but not necessarily

their creation or maintenance.

It is presumed that software engineers ’know’ the traces between

software artifacts (e.g., requirements or model elements) and code.

Existing tools merely record them (Egyed and Grunbacher, 2002) –

typically using a trace matrix (TM) that cross-reference artifacts at

the level of granularity the engineers chose (e.g., requirements to

classes vsṙequirements to methods traces). The engineers’ job is to

manually fill in the fields of the matrix by deciding for each cross-

reference whether or not the element on the one side, say a require-

ment, is implemented by the element on the other side, say a method.

A trace matrix thus reveals that traceability is of quadratic complex-

ity: a∗c for a artifacts (e.g., requirements) and c code elements (e.g.,

methods). Each cell in a trace matrix requires a non-trivial, human
∗ Corresponding author. Tel.: +4373224684388.

E-mail addresses: a@ghabi.net (A. Ghabi), alexander.egyed@jku.at (A. Egyed).

d

f

F

n

http://dx.doi.org/10.1016/j.jss.2015.06.037

0164-1212/© 2015 Elsevier Inc. All rights reserved.
ecision. Consider, for example, the Gantt Project system (GAN, 2014)

one of our study systems) with hundreds of artifact elements and

housands of Java methods. A complete traceability matrix for the

antt Project system requires tens of thousands of decisions; one for

very model element/Java method pair. The scalability implication

s daunting (Bianchi et al., 2000). Once established, the traceability

ust be kept up-to-date while the software artifacts and/or the code

hanges (Clarke et al., 1999) – to remain consistent and useful.

Yet, traceability cannot be captured or maintained by a single en-

ineer because in any complex engineering effort engineers have par-

ial knowledge only. Traceability is thus a collaborative process that

nvolves many engineers. Moreover, traceability is a mostly manual

rocess (automation are mostly limited to information retrieval dis-

ussed later). Given that traceability is also of non-linear complex-

ty, it should not surprise that there is never a guarantee of cor-

ectness or completeness. Naturally this is a problem because the

forementioned studies on the benefits of traces (Briand et al., in

ress; Mäder and Egyed, 2011) presume correctness and complete-

ess. Now consider that today most engineering projects do not even

apture traceability (upfront). Rather, they capture it at later stages

after system completion) or never in which case this knowledge re-

ains in the heads to the engineers who built the system. Unfortu-

ately, during the development of a system and after its delivery to

he client, key personnel may move on. Even if they stay, it is well

ocumented that the engineers’ recollection of artifacts and code

ades over time – and with it the memory of traceability (Gotel and

inkelstein, 1994). However, it is exactly here that traceability is most

eeded.

http://dx.doi.org/10.1016/j.jss.2015.06.037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.06.037&domain=pdf
mailto:a@ghabi.net
mailto:alexander.egyed@jku.at
http://dx.doi.org/10.1016/j.jss.2015.06.037

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192 179

s

t

c

u

i

t

i

e

c

d

s

o

a

p

e

i

p

w

o

w

t

i

i

2

f

e

m

a

t

2

(

a

a

a

a

m

t

d

c

t

i

r

R

t

c

s

3

s

a

o

i

t

h

t

w

a

a

c

g

m

l

i

t

b

f

e

w

b

p

e

i

H

p

m

c

m

t

(

e

p

m

v

m

1

f

s

q

b

t

a

e

t

b

Explicit traceability capture is thus a pre-requisite to principled

oftware engineering. This paper introduces a language and approach

hat allows engineers to express traceability at any level of detail,

ompleteness, certainty, and correctness. An example of a traceability

ncertainty is if the engineer remembers that a given requirement

s implemented in some set of classes but not exactly which ones of

hem. It would be wrong for a trace capture tool to force a precise

nput from an engineer in the face of such uncertainty. Yet, if multiple

ngineers input partially uncertain traceability then it is possible to

ombine this knowledge for a more complete understanding. We will

emonstrate that it is possible to automatically reduce, even resolve,

ome uncertainty by automatically inserting logical consequences

f the input provided by the engineers. As this example shows, our

pproach is most useful for situations where multiple engineers

rovide input about traceability. Yet, traceability provided by differ-

nt engineers may not be consistent. We will demonstrate that it

s possible to automatically identify incorrectness where the input

rovided by engineers is contradictory. But most significantly, we

ill demonstrate that this automation is correct even in the presence

f inconsistent input.

This paper combines our findings from three conference papers

here we described the traceability language for model-to-code

raceability (Egyed, 2004), an effective reasoning mechanism that

s able to check correctness (Ghabi and Egyed, 2012), and manag-

ng inconsistencies in SAT problems with HUMUS (Nöhrer et al.,

012). The added value is in (a) providing a scalable, precise basis

or reasoning based on SAT solvers; (b) more numerous and larger

mpirical evaluations; (c) a broadened scope that covers require-

ents, model elements and code; and (d) the integration of HUMUS

nd SAT for correct reasoning in context of potentially inconsistent

raceability.

. Illustration

We use the illustration of a video-on-demand system (VOD)

Dohyung) throughout this work to explain many of the uncertainty

nd incompleteness issues that characterize artifact-to-code trace-

bility. In Fig. 1 we depict a state transition diagram on the left side

nd a table of requirements on the right side. The state transition di-

gram models the behavior of the VOD system. The table of require-

ents on the right side of Fig. 1 is an abbreviated documentation of

he requirements implemented in VOD. Together, these two diagrams

epict the many artifacts that engineers may want to trace to the

ode. For example, each requirement (i.e. row) in the table is an ar-

ifact that should be implemented somewhere in the code. The same

s true to for the state transitions. For the sake of brevity we will be

eferring to the requirements and state transitions by their IDs: e.g.,

1 or S4.

The VOD is a real albeit smaller system implemented in Java. For

he sake of brevity we abstract the implementation into five pieces of

ode – labelled by their short acronyms {A, B, C, D, E}. Each of them

tands for a set of Java classes.
Fig. 1. Illustration System: Vid
. Artifacts and code relationships

While it is common that engineers create and use artifact de-

criptions, it is still not common to document where exactly each

rtifact is implemented in the source code or how it is related to

ther software development artifacts. Knowing about traceability is

mportant for understanding complex systems and understanding

he impact of a change (e.g., if a part of the requirements changes

ow would it impact the implementation?). The goal of this work is

o help the engineer explore this kind of relationship between soft-

are development artifacts and the code. A software development

rtifact could be any common artifact used during the development

nd/or maintenance of a software project such as UML model, use

ases, or requirements definition.

We refer to a piece of source code as a code element where the

ranularity of the code element is entirely user-definable. A code ele-

ent could be a line of code, a method, a class, a package, or any other

ogical grouping (e.g., architectural component). We will discuss the

mplications of different granularity choices later. We presume that

he code elements are disjoint in that the same line of code may not

elong to more than one code element.

We refer to individual requirements, states transitions, etc as arti-

act elements. Here also the granularity is arbitrary user definable. For

xample, we could trace the entire state transition diagram to code or

e could trace its individual states and transitions. The relationship

etween artifact elements and code elements is bidirectional. We ex-

ect that a single artifact element is implemented in multiple code

lements (one-to-many mapping) because artifact elements are typ-

cally higher-level descriptions of the implementation of the system.

ence they are expected to require larger amounts of code to im-

lement them. However, a single code element may also implement

ultiple artifacts (particularly, if the granularity of code elements if

oarse). Moreover, it is not correct to assume that every code element

ust implement an artifact element. This assumption is true only if

he artifact elements describe the entire software system. Artifacts

e.g. models) can be incomplete either by choice or by omission. For

xample, the state transition diagram in Fig. 1 is by no means com-

lete and hence not all code will trace to it.

Fig. 1 includes a state transition diagram (which is a behavioral

odel) and it includes also a list of requirements. Those artifacts pro-

ide independent perspectives onto a software system – we speak of

ultiple perspectives or views (Antoniol, 2001; Gotel and Finkelstein,

994; Parnas, 1972). Each perspective describes the software system

rom a different point of view. For example, the state transition per-

pective describes the software system independently from the re-

uirements but there are clearly overlaps. R4 about stopping the play-

ack, for example, is also implemented in the state transition diagram

hrough various transitions. Perspectives may be at different levels of

bstraction (i.e., separating the structure from the behavior). A code

lement may thus implement artifact elements of different perspec-

ives. For example, whatever code implements the stopping of a play-

ack implements both the stop transitions and the stop requirement.
eo On Demand (VOD).

180 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192

o

a

o

i

i

E

a

d

a

t

e

s

i

n

t

c

c

i

(

4

u

a

c

i

e

c

o

E

t

e

a

b

n

t

i

d

4

m

a

s

a

m

m

f

c

v

i

m

r

I

E

a

R

4. Language for expressing traceability

4.1. Precise trace information

Existing state-of-the-art requires precise traceability information

which is often captured in form of a trace matrix (TM). Such a trace

matrix would identify the artifact elements and code elements at a

level of granularity defined by the engineer. Of course, precise trace

information among some cells in a trace matrix may exist and engi-

neers should still be able to capture them. In our language, the trace-

ability between an artifact element ae and a code element ce would

then be defined either as a trace(ae, ce) indicating that ce is imple-

menting ae; or as a no-trace(ae, ce) indicating that ce does not imple-

ment ae. Establishing such traceability information requires a precise

knowledge about each code element and artifact element individu-

ally. Typically, engineers have such precise knowledge (i.e. expertise)

on the parts of a system which they have been personally involved

with. However, they may also have knowledge about other parts of

that system though perhaps less precise or certain.

4.2. Expressing uncertainty

In interviews and surveys with researchers and practitioners

(Egyed et al., 2010; Mäder and Egyed, 2011; Mäder and Egyed, 2012)

we identified a range of uncertainty scenarios. Subsequent study re-

vealed that these uncertainties were nearly always the result of not

knowing the role of individual artifacts or code in groups thereof. For

example, one may know that the selection and subsequent playing

(group denoted as {select, playing}) of a movie is implemented in

code elements {A, B, C}. Yet, one may not know which part of code {A,

B, C} belongs to select and which part belongs to playing individually.

In Ghabi and Egyed (2012), we introduced the concept of groupings

of artifact and code elements to support grouping uncertainties. The

code element group (CEG) is a group bundling one artifact element to

a set of code elements. For example, ceg(R2, {B, C}) expresses that the

artifact element R2 is implemented by B, C, or both. Furthermore, the

artifact element group (AEG) is a group bundling one code element

with a set of artifact elements, e.g., aeg(C, {R1, R2}). It expresses that

the code element C is implementing requirements R1, R2, or both. In-

deed, trace, no-trace, ceg, and aeg are the four basic constructs of our

approach through which all uncertainties are expressible. We do not

argue that these are the most common constructs but rather they are

the most simplistic constructs to express traceability certainties and

uncertainties. However, more complex situations are awkward to ex-

press in form of ceg and aeg. Our approach thus also defines a higher-

level language which describes situations we encountered in practice

and can be broken down to the four basic constructs for reasoning.

These are discussed next.

4.3. Language for expressing uncertainty

Engineers could provide input in form of the four constructs dis-

cussed above. In addition, our approach supports artifact to code re-

lationships for more complex but common situations. These relation-

ships are denoted as {ae∗}relationship{ce∗} where {ae∗} refers to the

set of artifact elements, {ce∗} to the set of code elements, and rela-

tionship to the situation (e.g., implAtLeast, implAtMost, implExactly,

or implNot). For example, one may know that {playing} is definitely

implemented in code element {A} but it could be implemented in

other code elements also: hence, {playing} implAtLeast {A}. The star

symbol (∗) in this notation expresses multiplicity in that ae∗ may

stand for multiple artifact elements or ce∗ for multiple code elements.

We denote CE as the set of all code elements and AEP as the set

of all artifact elements within a given perspective P where the per-

spective is entirely user definable (e.g., requirements, architecture, or

state chart). The statement CE − {ce∗} identifies all the code elements
ther than those identified in {ce∗} (i.e., a relationship usually affects

set of code elements {ce∗} but often also the complementary set of

ther code elements CE − {ce∗}). Likewise, the statement AEP − {ae∗}
dentifies all artifact elements in a given perspective other than those

dentified in {ae∗}. Note that this language was already introduced in

gyed (2004) in principle. In Ghabi and Egyed (2012), we then added

formal basis for this language based on the four basic constructs

iscussed above and guidance in form of consistency, completeness,

nd granularity constraints. This paper uses the formal basis provided

here but provides a new SAT-based realization thereof. The key ben-

fit of this realization is that it no longer fails in the presence of incon-

istencies. Recall that inconsistencies are the result of contradictory

nput which is the norm if traceability originates from multiple engi-

eers. Inconsistencies normally confuse a reasoning engine. However,

his paper adds HUMUS as another technology to correctly isolate in-

onsistent input from reasoning to ensure that it no longer affects the

orrectness of the results. This paper also provides extensive empir-

cal evaluation on the scalability and effectiveness of our approach

discussed later).

.4. Defining common uncertainty constructs

We found that engineers provide a mixture of certainties and

ncertainties as input to traceability. It is straightforward to reason

bout the certainties. They are facts in a reasoning engine. It is more

hallenging to reason about uncertainties. Uncertainties provide flex-

ble means for establishing input. Therefore, uncertainties must be

xpressed as constraints on facts which require us to formalize these

onstraints and their logical consequences. Based on our observation

f engineers (Egyed et al., 2010; Mäder and Egyed, 2011; Mäder and

gyed, 2012) describing their certain and uncertain knowledge about

raceability, we identified four common relationships covering the

xpression of the observed scenarios. Note that these relationships

re not the only ones that exists but we found them to be applica-

le in many situations. Additional relationships may be defined as

eeded. This section discusses the different types of relationships and

he logical consequences of uncertainties which are useful for assess-

ng correctness and completeness of traceability and for better un-

erstanding trace granularity.

.4.1. ImplAtLeast input

The input {ae∗} implAtLeast {ce∗} defines that the artifact ele-

ents in {ae∗} are implemented by all of the code elements in {ce∗}

nd possibly more. An engineer may want to use this relationship if

/he is certain that the given code elements ce∗ implement the given

rtifact elements ae∗ but s/he is not certain as to whether other code

ay also implement the given artifact elements (e.g., the engineer

ay have been in charge of some code that partially implemented a

eature). This input not only provides some facts but it also implies a

orrectness constraint ensuring that every code element in ce∗ indi-

idually must be implementing a subset of ae∗. In the context of the

mplAtLeast construct, we derive a CEG for each of the artifact ele-

ents and an AEG for each of the code elements as follows:

forall ae: implAtLeast. {ae∗}
add ceg (ae, implAtLeast. {ce∗})

forall ce: implAtLeast. {ce∗}
add aeg (ce, implAtLeast. {ae∗})

For example, let us consider the following input example about

equirements R1 and R3 in Fig. 1:

nput 1: {R1, R3} implAtLeast {A, C}
ach requirement (i.e. artifact element) must be implemented by A

nd/or C. And each code element must be implementing R1 and/or

3. The corresponding AEGs and CEGs are:

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192 181

m

“

R

a

t

a

t

{

b

C

U

a

t

–

m

4

m

{

M

p

U

o

m

e

i

i

s

w

d

e

c

m

c

4

i

T

n

m

i

t

i

i

{

4

i

t

(

f

a

s

n

(

a

c

a

m

p

i

4

t

c

f

t

a

o

b

t

n

m

c

t

s

t

p

i

c

c

e

t

f

u

o

s

a

a

i

(

e

• aeg(A, {R1, R3}) and aeg (C, {R1, R3})
• ceg(R1, {A, C}) and ceg (R3, {A, C})

As such, aeg(A, {R1, R2}) implies that code A must either imple-

ent the artifact elements R1 or R2. The “or” operator is a logical

or”, implying that A may implement either R1 or R2 or both R1 and

2. The CEGs describe a relationship between a single artifact element

nd multiple code elements. For example, ceg(R1, {A, C}) implies that

he artifact element R1 must be implemented in either A or C or A

nd C (logical “or” again). Note that this input expresses the certainty

hat each artifact element in {ce∗} must be implementing a subset of

ae∗}. But it also has uncertainties. The artifact elements in{ae} may

e implemented by code other than {ce}(denoted as CE − {ce} where

E is the set of all code elements) – in the following referred to as

ncertainty (1). Moreover, other artifact elements within the same

rtifact/perspective (denoted as AEP − {ae} where AEP is the set of ar-

ifact elements in a perspective) may be implemented by code in ce

in the following referred to as Uncertainty (2). For example, code A

ay implement any subset of artifact elements {R1, R3}.

.4.2. ImplAtMost input

The input {ae∗} implAtMost {ce∗} defines that the artifact ele-

ents in {ae∗} are implemented by some of the code elements in

ce∗} but certainly not more. This input has Uncertainty (2) above.

oreover, an individual code element in ce may or may not be im-

lementing any artifact element in ae – in the following referred to as

ncertainty (3). But this input also expresses the certainty that every

ther code element not in {ce∗} must not implement any artifact ele-

ent in {ae∗}. Note that it is also important to understand what code

lements are not implementing an artifact element because know-

ng that a code element is implementing an artifact element does not

mply that it cannot be implementing another artifact element of the

ame perspective. An engineer may use this relationship if it is known

here roughly the given artifact elements are implemented but the

etails are unknown (e.g., the engineer may know that an artifact el-

ment is implement in class A, but not exactly which methods of that

lass).

forall ae: implAtMost. {ae∗}
& ce: CE−implAtMost. {ce∗}

add no−trace (ae, ce)

forall ae: implAtMost. {ae∗}
add ceg (ae, implAtMost. {ce∗})

For example, if {R4} implAtMost {C, D} then R4 is either imple-

ented in C, or D, or C and D; and R4 may not be implemented by

ode other than C or D:

• ceg(R4, {C, D})
• Certainties: no-trace(R4, A); no-trace(R4, B); no-trace(R4, E)

.4.3. ImplNot input

The input {ae∗} implNot {ce∗} defines that the artifact elements

n {ae∗} are not implemented by any of the code elements in {ce∗}.

his input is a negation of the implAtMost input because {ae∗} is

ot implemented by {ce∗} implies {ae∗} implAtMostCE−{ce∗} (the re-

aining code). But still, it is not legitimate to assume the implAtMost

nput as long as it has not been explicitly defined by the engineer. Fur-

hermore, there is no need to derive AEG or CEG in the context of the

mplNot construct. We could, however, generate precise traceability

nformation indicating a no-trace between each artifact element in

ae∗} and each code element in {ce∗}.

.4.4. ImplExactly input

The input {ae∗} implExactly {ce∗} defines that every code element

n {ce∗} implements one or more artifact elements in {ae∗} and that

he artifact elements in {ae∗} are not implemented in any other code
CE − {ce∗}), which allows us to define no-trace between each arti-

act element in {ae∗} and each code element in CE − {ce∗}. We can

lso safely state that each code element in {ce∗} implements a sub-

et of {ae∗}. But this does not mean that these code elements could

ot implement other artifact elements (AEP − {ae∗}) – Uncertainty

2) above. This input has correctness constraints similar to the ones

bove and allows us to generate AEGs and CEGs as previously dis-

ussed:

forall ae: implExactly. {ae∗}
& ce: CE−implExactly. {ce∗}

add no−trace (ae, ce)

forall ae: implExactly. {ae∗}
add ceg (ae, implExactly. {ce∗})

forall ce: implExactly.{ce∗}
add aeg (ce, implExactly. {ae∗})

For example, if {R2, R3} implExactly {B,C} then we can gener-

te two AEGs and two CEGs (e.g,. neither R2 nor R3 may be imple-

ented by code other than B or C). The implExactly input also im-

lies a few certainties, such as no-trace(R2, A) because if R2 must be

mplemented within B and C:

• aeg (B, {R2, R3}); aeg(C, {R2, R3})
• ceg (R2, {B, C}); ceg(R3, {B, C})
• Certainties: no-trace (R2, A); no-trace(R3, A); no-trace(R2, D); no-

trace(R3, D); no-trace(R2, E); no-trace(R3, E)

.4.5. Footprint graph

We capture both facts and constraints (certainties and uncertain-

ies) in a graph structure, which we call the footprint graph. The graph

ontains a node for every code element (called CE-nodes) and a node

or each artifact element (called AE-nodes). The connections between

hese nodes describe the certainties of the input (trace or no-trace) –

nd the certainties that are generated out of the logical consequences

f the uncertainties. E.g., a trace(ae, ce) is depicted by a continues line

etween the AE-node of ’ae’ and the CE-node of ’ce’. Analogically, no-

races are depicted by dashed lines. Furthermore, the graph contains

odes to capture artifact element groups (AEG-nodes) and code ele-

ent groups (CEG-nodes). These two kinds of nodes describe the un-

ertainties of the input. The correctness constraints are inferred from

hese nodes. Note that the visual footprint graph in this paper is quite

imilar to the graph introduced in Ghabi and Egyed (2012). However,

he implementation does not use this graph (it is for illustration pur-

oses) but instead is based on SAT expressions.

Input 1: {R1, R3} implAtLeast {A, C}
Input 2: {R2, R3} implExactly {B, C}
Input 3: {R4} implAtMost {C, D}

For the simple illustration discussed in Section 2 and the three

nputs discussed previously and repeated above, Fig. 2 shows the

orresponding footprint graph. The middle two columns depict the

ode elements (CE-nodes) for A, B, C, D, and E; and the artifact el-

ments (AE-nodes) for R1, R2, R3, and R4. The left column depicts

he artifact element groups (AEG) by connecting each set of arti-

act elements to the corresponding code element, and the right col-

mn depicts the code element groups (CEG) by connecting each set

f code elements to the corresponding artifact element. This graph

tructure depicts the certainties as connections between CE-nodes

nd AE-nodes and uncertainties as connections between CE-nodes

nd AEG-nodes or AE-nodes and CEG-nodes. In terms of scalabil-

ty, the footprint graph structure grows linearly with the user input

#totalnodes = #CE−nodes + #AE−nodes).

The footprint graph is the foundation for automatic trace gen-

ration. During trace generation, the artifact elements in the graph

182 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192

{R2, R3}

{R2, R3}

{R1, R3} R1

R3

R4

R2

A

B

C

D

E {B,C}

{B,C}

{C,D}
{R1, R3}

{A,C}

{A,C}

CEGAEG Code Elements Artifact Elements

no-trace

Uncertain
Trace

Uncertain
Trace

Fig. 2. Footprint Graph from Input.

{R2, R3}

{R2, R3}

R1

R3

R4

R2

A

B

C

D

E {B,C}

{B,C}

{R1, R3}

{A,C}

CEGAEG

trace

no-trace

Uncertain
Trace

Uncertain
Trace

Code Elements Artifact Elements

{C,D}

Fig. 3. Footprint Graph after Propagation Rules.

4

b

o

C

t

u

p

r

c

i

h

u

c

i

t

(

∀

m

h

v

I

p

A

A

∀

b

r

I

p

b

are propagated from the CEG-nodes and AEG-nodes (containing the

uncertainties) to the CE-nodes and AE-nodes (connected by the cer-

tainties). There are several such propagation rules discussed below

which are presented in our previous work (Ghabi and Egyed, 2012)

for model-to-code traceability whereas (Egyed, 2004) supported only

one of those rules.

4.4.6. Propagation rules for reducing uncertainty

Consider the example in Fig. 2 once again. The first input resulted

in aeg(A, {R1, R3}) implying that A must implement either R1 and/or

R3. Then the third input resulted in no-trace(R2, A) and no-trace(R3,

A). So if A is supposed to be implementing {R1, R3} but A is not sup-

posed to implement R3 then clearly A must be implementing R1 –

the only remaining artifact element in the AEG. Recall that the AEG

defines a constraint over multiple artifact elements where at least

one of these artifact elements has to be implemented by the code el-

ement. Uncertainties in an AEG can thus be resolved (or reduced) by

eliminating artifact elements that are known to not implement the

code based on other input:

if no−trace (ae, ce)

forall ceg: CEG where ce in ceg. {ce∗}
ceg. {ce∗} := ceg. {ce∗}−ce

forall aeg: AEG where ae in aeg.{ae∗}
aeg.{ae∗} := aeg.{ae∗}−ae

4.4.7. Propagation rules for suggesting trace

Uncertainties in a CEG are resolved similarly. For example, the first

input also resulted in ceg(R3, {A, C}) implying that R3 was supposed

to be implemented in either A and/or C. Since R3 was excluded from

code element A, the CEG is left with only one code element, namely

C. This remaining code element must be implementing R3 for CEG to

be satisfied.

if ceg. {ce∗}. size = 1 then

trace (ceg. ae, ceg. {ce∗}. first)

remove ceg

if (aeg. {ae∗}. size = 1) then

trace (aeg. {ae}. first, aeg. ce)

remove aeg

Fig. 3 shows the footprint graph after the application of the propa-

gation rules discussed above. Note that the certainty increased as the

links between AEs and CEs increased while uncertainty decreased be-

cause there are fewer CEG and AEG nodes now. The propagation rules

are applied for as long as possible. The order in which the rules are

applied is irrelevant.
.4.8. Consistency constraints

Input given by the engineers may be partially/fully generated

y hand and may be based on potentially outdated documentation

r second-hand information (i.e., from previous project members).

onsequently, the input given by the engineers cannot be fully

rusted – indeed it may even be inconsistent where one engineer’s

nderstanding contradicts another engineer’s understanding. Our ap-

roach assumes that information provided by the engineers is cor-

ect unless it violates correctness checks. Fortunately, not every input

ombination is valid and our approach identifies four forms of input

nconsistencies. Do note that consistency does not imply correctness;

owever, with increasing quantity of input it becomes increasingly

nlikely that an input containing errors remains consistent, espe-

ially if the input is provided by different engineers (we validate this

n Section 7.2.2.1). The following demonstrates how our graph struc-

ure supports correctness checking.

1) Every AEG must have at least one artifact element:.

aeg ∈ AEG, aeg.size > 0

An AEG is created if a code element is known to include two or

ore artifact elements (e.g., recall implAtLeast). Thus, it is invalid to

ave all artifact elements removed from an AEG. For example, such a

iolation occurs with the following input:

nput 4: {R1} implNot {A}
Recall from Section 4.4.6 that the aeg(A, {R1, R3}) from input 1 was

reviously reduced to trace(R1, A) because R3 is not implemented by

. If another engineer now states that R1 is also not implemented by

then the AEG is left without an artifact element. In this case, input 1

could no longer be satisfied. Note that it is typically easy to see when

two inputs conflict but it is hard to see conflicts among three or more

inputs. The example above is a conflict among inputs 1, 2, and 4 and

not obvious to identify despite the small size of the illustration.

(2) Every CEG must have at least one code element:.

ceg ∈ CEG, ceg.size > 0

A CEG is created if an artifact element is known to be implemented

y one or more code elements. It is invalid to have all code elements

emoved from a CEG. Such a violation occurs with the input:

nput 5: {playing} implNot{C}
Recall from Section 4.4.7 that the ceg(R3, {A, C}) from input 1 was

reviously reduced to trace(R3, C) because R3 was not implemented

y A. If now R3 is also not implemented by C then the CEG is left with-

out a code element.

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192 183

(

p

i

m

T

s

(

a

t

A

e

O

b

a

4

m

l

a

t

o

t

c

g

t

t

m

i

H

u

g

a

o

f

t

t

g

o

w

i

g

r

m

u

d

(

m

a

{
e

w

b

fi

n

t

l

l

c

i

t

i

t

p

4

i

i

d

b

c

r

a

m

e

e

a

o

n

5

g

t

t

r

t

v

(

a

B

a

w

r

t

g

t

b

i

i

c

5

J

i

t

r

f

o

a

t

o

U

b

t

3) Every artifact element must be implemented by some code:. The

remise of this approach is that it works only on artifacts that are

mplemented in code. Even if no CEG or AEG is violated, we must still

ake sure that every artifact element is implemented by some code.

his check is particularly useful for those artifact elements in per-

pectives for which no input was defined.

4) A code element cannot be implementing and not implementing an

rtifact element at the same time:. A CE-node contains the certain-

ies of the input and the resolved uncertainties of the CEG-nodes and

EG-nodes. These certainties should not conflict such that a code el-

ment implements and not implements the same artifact element.

bviously, saying R2 is implemented by A and R2 is not implemented

y A, produces this kind of error – though in practice such conflicts

re hard to see manually if multiple input are involved.

.4.9. Granularity constraints

While software development standards mandate the establish-

ent of traces between artifact and code, they do not define at what

evel of granularity (detail) these traces should be generated. For ex-

mple, if the code is implemented in Java then the engineer has

he choice of establishing traceability to Java classes, Java methods,

r even individual lines of code. It is also possible to establish the

raceability to Java packages or any other architectural grouping (e.g.,

lient code vs. server code).

Obviously, the level of granularity vastly affects the cost of trace

eneration. In Egyed et al. (2005), we determined that the input quan-

ity of the artifact-to-class mappings was almost 10 times less than

he input quantity of the artifact-to-method mapping; but 10 times

ore than the model-to-package mapping. This represents a signif-

cant cost factor since this ratio is roughly equivalent to the effort.

owever, in Egyed et al. (2005), we also discussed that a coarser gran-

larity resulted in quality loss because functionality was grouped to-

ether that was separated on a finer level of granularity (i.e., we found

16% increase in the false positives rate of traces based on their

verlap on Java methods versus Java classes). But in same study we

ound that the return on investment flattens out significantly when

he granularity was finer than implementation classes (i.e., traces be-

ween model and methods/lines of code cost much more than was

ained in quality).

Obviously, what granularity rate to choose depends on the needs

f the engineers and the effort they are willing to put in. Previously,

e argued that the granularity should be staged depending on the

mportance of the artifact element. One may start off by defining the

ranularity on a coarser level (e.g., artifact to Java classes) and then

efine key areas to a finer level of granularity (e.g., artifact to Java

ethods). Here we propose an additional avenue by defining gran-

larity constraints that suggest which code elements to refine. This is

iscussed next.

5) Every correctness constraint a granularity constraint:. It must be

entioned that any of the four correctness constraints discussed

bove could be caused by coarse granularity. Recall that input 4

R1} implNot {A} caused a correctness violation because the code el-

ment excluded both artifact elements R1 and R3 from the AEG. But

hat if code element A was too coarse grained and should have been

roken down into methods, say A1 and A2. The following input, on a

ner level of granularity, resolves the conflict:

Input 1: {R1, R3}implAtLeast {A1, C}
Input 4: {R1} implNot {A2}

Correctness violations indicate problems where the input can-

ot be reconciled. Granularity thus may cause correctness viola-

ions because they might group code elements that should not be-

ong together. Note that it is not necessary to refine the granularity

evel of all code elements. The correctness constraint identified the
ode element A as the offending place (we discuss later how this

s done correctly automatically). A selected refinement of A only is

hus sufficient to resolve the problem if it is the result of a granular-

ty problem. Of course, some input may be incorrect irrespective of

he granularity. Changing the granularity there would not resolve the

roblem.

.4.10. Completeness constraints

Input that is correct is not necessarily complete. Recall that our

nput language allows for two degrees of uncertainties – partial-

ty and cluster uncertainties. The propagation rules discussed above

emonstrated how some uncertainties can be resolved. Yet, it must

e stressed that the propagation rules must adhere to the logical

onsequences of the input. Likely not all input uncertainty can be

esolved and it is useful to quickly identify those artifact elements

nd/or code elements that are still incomplete. For an artifact ele-

ent to be complete, it must have traces and no-traces to all code

lements:

complete(ae) ⇒
#trace(ae) + #no−trace(ae) = #CE

The completeness of an artifact element can be determined for

very artifact element separately. A code element implementing

n artifact element ’ae’ is complete if all other artifact elements

f the same perspective AEP − {ae} are either defined as trace or

o-trace.

. Encoding and correct reasoning

One of the main challenges is to correctly reason about the lan-

uage presented above – even in the presence of inconsistencies. On

he surface, we require a reasoning engine that allows us to encode

he facts, uncertainties, and constraints. The reasoning engine’s main

esponsibility would be to refine the input through the propagation of

he rules discussed in the previous section and to identify constraint

iolations. We tested this on two, quite different reasoning engines:

1) Drools (DRO, 2014) – an incremental business reasoning engine;

nd (2) PicoSAT (Biere, 2008) – a light weight yet powerful SAT Solver.

oth engines were capable of performing the required computations

nd delivered correct results though the performance of PicoSAT

as far superior to Drools. But below the surface, we also require a

easoning engine that functions correctly in the presence of inconsis-

encies – a key requirement since inconsistencies among different en-

ineers’ assumptions are expected to be the norm and not the excep-

ion (Egyed et al., 2010). Here the SAT reasoning engine was superior

ecause we could augment its reasoning to support correct reasoning

n the presence of inconsistent input. The following discusses both

mplementations and also how correct reasoning is possible through

orrect isolation of inconsistencies.

.1. Encoding traceability language in drools

Drools is a Business Rules Management System developed by

Boss. It delivers a very powerful rules engine (Drools Expert) with

ts own rules language (DSL). Each rule has a condition. Each time

he condition is satisfied, the action of the rule will be executed. The

ule depicted in Listing 1 shows how AEGs and CEGs are generated

rom implAtLeast constructs. Further rules handle the different types

f constructs and all the reasoning of reducing uncertainty from AEGs

nd CEGs.

The rules language is straight forward and could easily be ex-

ended to cover new rules (see future work). This is a key feature of

ur tool TraceAnalyzer which will be introduced later (see Section 6).

nfortunately, the Drools reasoning engine (Version 5.x) is based on

ackward chaining reasoning. Once the reasoning engine is started,

he engine fires the rules in the knowledge base and then checks if

184 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192

Listing 1. Derive AEG/CEG from ImplAtLeast with Drools f

f

s

o

e

t

R

l

w

t

5

o

a

i

i

c

i

o

u

R

B

f

t

a

a

a

t

w

m

c

c

t

t

t

t

5

p

e

q

p

i

o

i

i

t

s

t

l

i

o

(

o

i

i

c

i

I

there are conditions satisfying the fired rules. If the condition is not

satisfied the result from the fired rule will be ignored as if it was not

fired. This kind of reasoning is inefficient as it computes unneeded

facts and waits to invalidate them later when the condition of the

rule is not satisfied. E.g. the rule in Listing 1 will be called for ev-

ery construct with type implAtLeast. The created AEGs and CEGs will

be effectively added to the knowledge base only for input construct

of type implAtLeast and they will be ignored for all other constructs.

The Drools engine performs very well with a moderate number of

input constructs but its scalability suffers given the exploding num-

ber of rules fired even if they are not satisfied. During our evaluation

we faced many cases where the engine required hours to resolve the

input. Therefore we developed another implementation of our ap-

proach using a SAT Solver. This reduced the runtime of some case

study systems from hours to seconds.

5.2. Encoding traceability language in SAT

SAT solvers are highly efficient tools designed to check the sat-

isfiability of a problem encoded in conjunctive normal form (CNF).

Encoding a TM of a given system into a CNF input is a straightforward

operation. Each cell in a TM is basically a Boolean literal that could

be “true” if the cell contains a trace, or “false” if the cell contains a

no-trace. Depending on the uncertainty input, our approach derives a

number of possible traces and no-traces that fill up some cells in the

TM. We define the values of the literals corresponding to the filled

cells by their trace/no-trace value. The empty cells are encoded as

variables (undefined). Every AEG or CEG resulting from the input is

translated into a clause – a disjunction of all the literals referenced

by the corresponding AEG or CEG. The conjunction of all the clauses

resulting from encoding all the AEGs and CEGs builds a CNF formula,

which is the presentation of the initial uncertainty input that we use

as an input for the SAT solver.

As an example, consider the construct Input 1: {R1, R3} im-

plAtLeast {A, C}, which can be decomposed into the ceg(R4, {C, D})

and several no-trace relationships such as no-trace(R4, A). Each cell

in the TM is represented by a literal in the CNF formula, in this case

by the literal R4−A, with the semantic of being positive for trace and

negative for no-trace. Since each no-trace relation corresponds to one

cell exactly, they can be directly translated to clauses containing a

negated variable. For example, ¬R4−A says that R4 does not trace to

code element A. The semantic of the ceg(R4, {C, D}) is that R4 is im-

plemented by C or D or both of them. As a consequence, the cells

R4−C and R4−D cannot both be no-traces. This can be represented

as the clause R4−C ∨ R4−D. However, since both the no-trace and the

CEG relationships stem from the same construct provided by an engi-

neer, we add a clause selector variable to the clauses stemming from

a single input construct, i.e., input1. As a result, for our example the

construct {R4} implAtMost {C, D} is translated to the following CNF:

(¬input1 ∨ R4−C ∨ R4−D) ∧ (¬input1 ∨ ¬R4−A)

So, if the clause selector variable input1 is true then the clauses are

included into reasoning, otherwise they are ignored (this is important
or correct reasoning discussed below where we need to isolate of-

ending inputs). For the sake of brevity we have shown an example of

electors on construct level, but we should note that the granularity

f our reasoning could be arbitrarily changed by changing the refer-

nce of the selector variables: e.g. we can introduce selector variables

o reference each clause of CEGs or AEGs, or even literals of cell in the

TM. The finer the granularity of the selector variable, the more se-

ectors are added to the CNF. A finer granularity makes the CNF bigger,

hich requires the SAT engine to spend more reasoning time. It is a

radeoff between performance and the granularity of the results.

.3. Reasoning about traceability in SAT

The SAT solver checks whether the input CNF is satisfiable (SAT)

r unsatisfiable (UNSAT). A satisfiable CNF input means that there is

t least one set of assignments for all the literals allowing the entire

nput CNF to evaluate to true. Considering the assumptions provided

n the CNF, its satisfiability means that the encoded problem does not

ontain any inconsistencies (though it does not necessarily mean that

t is correct). Furthermore, the PicoSAT solver allows for an efficient

racle to investigate the assignments of the remaining literals, filling

p the remaining cells in the TM. For example, we already know that

4−A must be a no-trace because it was defined to be false above.

ut, what about R4−C or R4−D? Presently both could be either true or

alse individually but not both. Yet in the presence of additional input,

his conclusion may no longer be valid and we use the SAT solver as

n oracle to automatically test whether these assignment are valid by

dding yet another clause, one at the time. For example, we would

dd CNF ∧ (¬R4−C), then separately CNF ∧ (R4−C) to test whether

he CNF is still satisfiable with and without R4−C. If CNF ∧ (R4−C)
as satisfiable, but CNF ∧ (¬R4−C) was no longer satisfiable then we

ay conclude that (R4−C) must be true and hence a trace – a logical

onclusion of the input provided. The entire procedure of adding a

lause and testing it is done automatically. The UNSAT state of CNF

hus has two interpretations: (1) UNSAT on the input CNF implies that

he input is inconsistent and (2) UNSAT on the oracle CNF implies that

he added clause is no longer feasible. The problematic case is thus

he first one which is discussed next.

.4. Correct SAT reasoning with Humus

SAT solvers fail if the input CNF is not satisfiable. This is a major

roblem here because we expect the different inputs from different

ngineers to be inconsistent as a norm and not as an exception. The

uestion we answer next is how to enable SAT-based reasoning in the

resence of inconsistencies. Nöhrer et al. (2012) compared different

solation strategies for dealing with such inconsistencies. The most

bvious one is MAXSat (Li and Manyà, 2009), which identifies a max-

mal subset of the CNF that is still satisfiable. In other words, MAXSat

solates (i.e., temporarily discards) as many clauses as needed to make

he CNF satisfiable again. The problem that Nöhrer et al. also demon-

trated was that such isolation does not ensure correct reasoning

hereafter. The reasons are this: for an inconsistency there must be at

east two contradictory clauses. For example, let us assume another

nput that says that A traces to R4, which adds (¬input2 ∨ R4−A) to

ur CNF:

¬input1 ∨ R4−C ∨ R4−D) ∧ (¬input1 ∨ ¬R4−A)

∧(¬input2 ∨ R4−A)

Clearly, the second and third clauses are contradictory – a trivial

bservation here. Either the second clause is wrong or the third one

s (or perhaps even both). By isolating any one of the two clauses, the

nconsistency is eliminated and the CNF becomes satisfiable. MAXSat

annot know which cause is correct and which one is wrong and

t simply makes a random decision that emphasizes the minimum.

t may thus isolate the correct clause (if there is one), leaving the

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192 185

w

i

t

b

d

s

(

b

c

c

b

s

e

q

a

r

l

l

w

v

a

n

d

(

i

i

a

c

(

d

i

p

s

f

c

T

r

H

c

f

6

(

p

d

r

g

a

A

s

i

s

b

t

a

i

a

c

n

u

e

Table 1

Useability experiment case study systems.

CMA Design space Ecco

Language Java Java and C# Java

KLOC 5.6 91 33

Code Elements 158 80 251

Requirements 8 29 33

Size of RTM 1264 2320 8283

Per Subjects

Subjects 2 3 3

Familiarity 40 − 95% 70 − 95% 50 − 95%

Uncertainty (i) 100% 65 − 100% 75 − 90%

TraceAnalyzer

T/N Conflicts 38 453 832

Inconsistencies 28 54 192

Uncertainty (ii) 62.5% 0% 33%

s

e

c

7

a

o

a

t

e

t

n

a

r

g

b

a

7

i

t

c

s

s

e

(

i

f

P

n

m

p

t

rong clause in the CNF. The CNF becomes satisfiable but the reason-

ng about traceability in SAT (Section 5.3) would now be affected by

he still present, wrong clause – hence, the reasoning would no longer

e correct.

Addressing the problem of MAXSat, Nöhrer et al. (2012) intro-

uced the High Level Union of Minimal Unsatisfiable Sets (HUMUS)

trategy which computes the union of all Minimal Unsatisfable Sets

MUS) responsible for the CNF to be unsatisfiable. The basic concept

ehind it is to isolate all clauses (directly and indirectly) of the in-

onsistency and only keep clauses that have no relation to the in-

onsistency. Continuing on the example above, HUMUS would isolate

oth clauses – (¬input1 ∨ ¬R4−A) and (¬input2 ∨ R4−A) – thus as-

uring that the wrong clause is definitely isolated even though at the

xpense of also isolating the correct clause (if there is one). Conse-

uently, the HUMUS isolation ensures correct reasoning about trace-

bility in SAT after isolation – though at the expense of incomplete

easoning: since HUMUS would isolate both clauses it would also iso-

ate the other, presumed correct clause which reduces the CNF and

eads to less complete reasoning. In the most extreme case, HUMUS

ould isolate everything if all clauses where directly or indirectly in-

olved in the inconsistency. However, in practice this is not the case

nd HUMUS is in fact quite efficient in its isolation – the incomplete-

ess it causes is small and its effect quickly dissipates which we will

iscuss further in the evaluation.

The exact functioning of HUMUS is discussed in Nöhrer et al.

2012) but it should suffice to say that HUMUS computes the max-

mal satisfiable set (MSS) which is the opposite of the MUS. The MSS

s the maximal subset of assumptions such that adding any further

ssumption would turn a satisfiable CNF into unsatisfiable. On the en-

oding level, HUMUS requires the introduction of additional variables

literals) in the input CNF, the so called selector variables we intro-

uced earlier. They are used to link each clause to its corresponding

nput such that all clauses of an input are isolated at once. For exam-

le, since (¬input1 ∨ ¬R4−A) is involved in the inconsistency which

tems from input1, we might also not want to trust the other clause

rom input1, namely: (¬input1 ∨ R4−C ∨ R4−D). Though not a direct

ontributor, it is indirectly related to a clause that needs isolation.

he existence of those selectors do not influence the result of the SAT

easoning, therefore they are always true prior to inconsistencies. As

UMUS identifies clauses involved in inconsistencies, these clauses

an then be efficiently isolated by changing their selector variables to

alse.

. Proof of concept tool

Our approach is fully implemented in a tool called TraceAnalyzer

see screenshot in Fig. 4). This tool is implemented on the Eclipse

latform to offer a familiar user interface for engineers. It allows for

ifferent input views: from the traditional trace matrix (TM) shown

ight to the list of inputs shown left. It also lets the engineer investi-

ate the footprint graph (shown at the back), highlights correctness

nd granularity problems, and isolates them if desired. The Trace-

nalyzer is built in a modular structure (common eclipse plug-in

tructure) that allows different types of reasoning engines to be used

ncluding the business rule engine Drools (DRO, 2014) and the SAT

olver PicoSAT (Biere, 2008). Each of these reasoning engines could

e easily extended by implementing the extension points defined for

raceability reasoning. The extension of Drools engine is as simple as

dding new rules to the existing knowledge base (see example in List-

ng 1). The extension of SAT solver requires more elaboration as an

daptation of the CNF mapping is needed. Though presently the Pi-

oSAT reasoning engine is superior as was discussed. The validation

ext also focuses on this reasoning engine.

It is also noteworthy that TraceAnalyzer supports different gran-

larity levels: construct level, CEG/AEG level, and RTM cell level. The

ngineer could change the granularity level in the standard eclipse
ettings. This allowed us to verify our approach on the different lev-

ls and assess its performance in best case (construct level) and worst

ase (cell level) scenarios.

. Validation

Our approach deviates strongly from conventional trace capture

pproaches and introduces a new paradigm for creating traces. With

ur approach, the engineer is allowed to describe his/her knowledge

bout traceability between artifacts and code without being bound

o providing complete information or even correct information. The

valuation thus focuses on four key aspects:

• Usefulness: Do trace uncertainties and inconsistencies exist in

practice and does our approach reduce them?
• Correctness : Does our approach reason correctly - even in the

presence of uncertain and erroneous trace input.
• Completeness : Does the isolation of erroneous input affect the

completeness of the reasoning (because correct input will be iso-

lated also)?
• Scalability: Does our approach scale to large traceability problems

(quadratic growth).

To investigate these aspects, we rely on six case study systems:

hree for usefulness and the other three for correctness, complete-

ess, and scalability. Separate case studies were needed for the us-

bility study because of its different prerequisites. The usability study

equired immediate access to subjects and case studies to use our lan-

uage. On the other hand, the correctness, completeness, and scala-

ility studies required a gold standard of correct traces to compare

gainst.

.1. Usefulness

To assess usefulness, our approach presumes that engineers find

t easier and more intuitive to capture traceability using a language

hat has explicit mechanisms for handling uncertainty - mainly be-

ause we presume that each person has an incomplete and pre-

umably even inconsistent perspective of the traceability of a given

ystem. To test this basic assumption, we performed a controlled

xperiment involving eight subjects and three case study systems

listed in Table 1). CMA is the configuration management module

n an industrial product implemented in Java. It has eight high level

unctional requirements implemented in 158 classes (code elements).

erforming conventional traceability on such a system required engi-

eers to fill in a traceability matrix with 1264 cells (8 requirements

ultiplied by 158 code elements). Two software engineers (both em-

loyed by the company building CMA) volunteered to capture this

raceability using our approach. Furthermore, DesignSpace and Ecco

186 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192

Fig. 4. TraceAnalyzer Screenshots.

Table 2

Correctness, completeness, and scalability case study systems.

ReactOS Gantt JHD

Language C++ Java Java

KLOC 18 41 72

Code elements 239 (C) 2591 (M) 1763 (M)

Requirements 16 18 21

Size of gold standard 3824 46638 37023

s

r

t

s

t

a

q

i

e

w

s

a

m

p

o

e

t

t

fi

are larger research projects developed at the Johannes Kepler Univer-

sity (JKU). There, three graduate students volunteered to capture the

traceability for each system where 29–33 requirements were traced

to 80–251 code elements. The three systems ranged from 5–91 KLOC

in size.

The experiment was structured such that we had at least two sub-

jects per system in order to be able to identify the existence of (a) con-

flicts and (b) the complementary effects of traceability uncertainties

- the basic premise of our approach. Note that uncertainty is an indi-

vidual problem where a subject is unable to identify traceability pre-

cisely. Should uncertainty indeed be a major problem then we ought

to observe this among the eight subjects and the 70 requirements

they investigated. Conflicts and the complementary effects of uncer-

tainties reveal themselves only if multiple subjects capture traceabil-

ity independently of one another. If they do exist then we ought to

observe them among the 11,867 cells that make up the three systems’

RTMs.

We devised a controlled experiment whereby the eight subjects

were asked to recover the traceability of the three case study systems.

The experiment was preceded by a training session of about one hour

to explain the goal of traceability and to teach the uncertainty con-

structs. We answered the questions raised by the participants with-

out biasing their judgment. We encouraged them to be precise and

complete in their assessment but to refrain from guessing answers in

case of uncertainty. We also suggested alternative forms of capturing

traces and even allowed them to come up with their own constructs

if they deem necessary.

After the training session, the experiment started and no further

support was provided. First, the subjects of each case study system

had to work together to identify the requirements and code ele-

ments they would use for the study. In doing so, they identified 8–

33 requirements and 80–251 code elements (depending on the case

t

tudy). Each developer then captured the traceability between those

equirements and code elements separately. Finally, we collected the

raceabilty the subjects captured and analyzed them.

We observed that uncertainty was prevalent throughout all three

ystems, all eight subjects, and most requirements. Indeed, we found

hat each subject had a slightly different understanding of the system

nd how it was implemented. Table 2 lists that 65–100% of the re-

uirements captured by the subjects had some uncertainty (i) - that

s the subjects usually could not tell with certainty all the code el-

ments that traced to a given requirement even though all of them

ar highly familiar with the system overall (see Familiarity). This

trongly confirms the existence of uncertainty and thus motivates our

pproach.

We also analyzed whether subjects contradicted and/or comple-

ented each other in their traceability knowledge. The easiest exam-

le of a conflict is a direct trace/no-trace conflict (T/N conflict) where

ne subject claims a trace between a given requirement and a code

lement while another subject does not. Our approach detected be-

ween 38 and 832 such trivial conflicts. However, more important are

he existence of non-trivial inconsistencies (recall 4.4.8). We identi-

ed between 28 and 192 such inconsistencies. This strongly confirms

he need for the error detection mechanism of our approach.

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192 187

t

v

u

a

t

t

m

c

w

w

e

t

s

t

c

v

m

a

p

c

p

t

t

a

7

c

s

i

t

s

i

w

i

i

N

w

f

r

w

d

s

F

J

s

p

fi

e

t

c

m

q

d

p

c

t

i

n

T

p

v

e

p

s

u

p

c

w

d

f

a

a

e

u

f

o

t

s

n

c

w

3

p

e

o

e

e

i

w

l

o

t

o

t

a

a

e

n

u

g

s

n

p

t

c

7

r

a

s

n

7

o

g

t

W

p

g

i

g

c

i

Furthermore, we analyzed whether requirements with uncertain-

ies got reduced when combining uncertain input from multiple de-

elopers (recall 4.4.6 and 4.4.7). This is indicated in the Table as

ncertainty (ii) and we see that the uncertainty after applying our

pproach was reduced strongly compared to the individual uncer-

ainties that existed beforehand. For example, our approach reduced

he 65–100% uncertainty in the DesignSpace to 0% uncertainty, which

eans that all uncertainties were resolved for all requirements. This

onfirms the benefits of our approach.

After the experiment a short free-form discussion took place

ith each subject individually. Our intent was to ask the subjects

hether they had any traceability knowledge which they could not

xpress with the constructs provided by our approach. In response to

his question, two developers suggested bi-directional language con-

tructs. In the current language, it was only possible to define situa-

ions like: requirement1, requirement2 are at most implemented by

ode1, code2, code3 but those two subjects also desired to express re-

erse situations like: code1, code2 are at most implementing require-

ent1, requirement2. This is a legitimate use case that we intend to

ddress in future work (see Section 9). Furthermore, two subjects re-

orted problems in defining an appropriate level of granularity (re-

all 4.4.9). For the most part, the subjects traced requirements to Java

ackages or classes. However, the subjects felt the need to refine the

raceability for certain classes to method to better distinguish their

raceability. This refinement process was not supported and this is

lso an interesting use case for future work.

.2. Correctness, completeness, and scalability

Next, we discuss our approach’s correctness and scalability. We

onsider two kinds of input: (1) correct input, which presents a con-

istent knowledge about a system without any error involved; and (2)

nput with incorrectness containing errors. Correct input should not

rigger inconsistencies. Incorrect input may or may not trigger incon-

istencies and hence may or may not need isolation. For as long as it

s not detected as an inconsistency, it negatively affects the reasoning,

hich explains the need to understanding the likelihoods that such

ncorrect input remains hidden. But once it is detected, the HUMUS

solation is guaranteed to isolate it (the proof for this can be found in

öhrer et al. (2012)). Yet, the isolation may also affect correct input

hich reduces the completeness of the reasoning. Hence, the need

or investigating the completeness. In the remainder of this paper we

efer to detected errors as meaning that an inconsistency on cell level

as found.

For understanding correctness, completeness, and scalability, we

raw on another set of case study systems because we require a gold

tandard of correct and complete traceability to assess our approach.

or this, we identified three case study systems: Gantt (GAN, 2014),

HotDraw (JHO, 2014), and ReactOS Explorer (REA, 2014). All three

ystems are described in Table 2. Gantt and JHotDraw are open source

rograms implemented entirely in Java. The ReactOS Explorer is the

le explorer implemented for ReactOS which is an open source op-

rating system compatible with the Microsoft Windows-NT archi-

ecture and implemented in an object oriented C++ paradigm. We

hose these systems because we had available high quality require-

ent trace matrices (RTM) that contained all the traces between re-

uirements and methods/classes. Each RTM was captured by a key

eveloper of the system involved which guarantees the best quality

ossible. These RTMs are our gold standard which were attentively

reated by key developers of the different systems and we believe

hat they have the best possible quality for a conventional traceabil-

ty. We use them to assess the results computed by our approach.

The empirical evaluation in Section 7.1 has proven the useful-

ess of our approach on three case study systems (see Table 1).

he focus of the remaining evaluation is thus on correctness, com-

leteness, and scalability. To explore this, we systematically in-
estigated all possible uses of our approach by simulating virtual

ngineers using our technique on the aforementioned industrial

rojects (see Table 2). The intent of the simulation was to demon-

trate that the approach is applicable, functions correctly, and scales

nder many different kinds of usage scenarios in context of real

rojects. For each of the case study systems we generated input

onstructs (implAtLeast, implAtMost …) based on the correct TMs

e had available for each system. By systematically generating

ifferent combinations of such input constructs we simulated dif-

erent uses of our technology. This form of evaluation is useful to

dequately answer the research questions laid out above (i.e,. scal-

bility, correctness, likelihoods, or completeness) as we essentially

xplore all possible uses. What we cannot show through this eval-

ation is the usefulness of our language (i.e., would engineers pre-

er to use it over traditional TMs?). However, the intuitiveness of

ur language compared to the unnecessary strict TMs suggests that

he language should be useful which is the focus of further user

tudies.

Focusing on the key aspects above, we thus generated a large

umber of input sets. Each input set had ’n’ input relationships which

onsisted of arbitrary ratios of each construct: e.g. we had an input

ith 30 relationships that included 10% implNot, 20% implExactly,

0% implAtLeast, 40% implAtMost; or we had input with 100% im-

lExactly. The tricky part of this simulation does not reside in gen-

rating the input itself, but rather systematically varying the ratios in

rder to cover all possible usage scenarios. We believe that different

ngineers at different states in development are likely to use differ-

nt ratios of our language constructs. E.g., a knowledgeable engineer

s more likely to use implExactly than implAtMost. Some engineer

orking on details may not know other parts and may thus be more

ikely to use implAtLeast. We thus generated inputs with variations

f: (1) number ‘n’ of constructs, and (2) the ratio ‘r’ of each construct

ype in the input. Generating all possibilities results a large number

f inputs and we thus used an automated engine to explore them. For

est purposes, the number of constructs ‘n’ was varied between 30

nd 100, and the distribution of ratio ‘r’ will jump by 25%, either by

dding 25% more or less of a given construct type.

Additionally to the variations discussed above, we also studied the

ffect of errors on the correctness of the results delivered by our tech-

ique. There is no guarantee that the engineers would have a correct

nderstanding of a system. For this purpose we use the same inputs

enerated by the variation of ‘n’ and ‘r’ as discussed previously and

eeded errors. Like the case study systems, the seeded errors were

ot random but based on actual errors we observed with subjects

erforming trace capture (Egyed et al., 2010). Our evaluation thus sys-

ematically explores all possible uses of our technology on three real

ase studies involving real trace errors observed in practice.

.2.1. Evaluation with correct input

A correct input is a set of uncertainty constructs describing cor-

ect (though not necessarily complete) traceability knowledge about

system. In total we generate about 200 different inputs without

eeded errors for each of the three case study systems in the man-

er discussed above.

.2.1.1. Completeness of uncertainties. To evaluate the completeness

f our approach, we investigated the degree of traces/no-traces

ained from analyzing uncertainty constructs by the number of RTM

hat could be computed compared to the original gold standard RTM.

e refer to this number as cell coverage (the higher, the more com-

lete). Fig. 5 shows the percentages of cell coverage relatively to the

old standard RTM of each case study system while increasing the

nput size. We measure the input size by the number of uncertainty

roups UGs (the set of AEGs and CEGs together because the UG size

orresponds directly to number of clauses in SAT) derived from the

nput constructs. We notice the curved nature of the diagrams. It

188 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192

Fig. 5. Completeness with correct Input.

Fig. 6. Scalability with correct Input.

a

a

b

g

l

u

U

p

t

s

o

g

a

i

t

s

t

f

o

d

t

t

a

7

i

w

t

r

i

a

m

e

a

e

a

b

v

a

t

c

a

t

n

l

t

shows that the cells coverage increases quickly with few uncertainty

constructs. This implies that uncertain input allows us to derive cer-

tain facts quickly and this effect is stronger in the beginning and

slowly reduces. We thus believe that our approach is most useful for

quickly gaining good coverage when brainstorming among engineers.

But as the curve implies, it would be hard to obtain a 100% coverage

through such “guessing”. At a certain level of coverage, it is likely nec-

essary to explore the missing cells and refine them. The completeness

constraints generated by our approach would then be useful to guide

the engineer in resolving the remaining uncertainties.

Fig. 5 presents the mean values of all test inputs generated for each

test case system relatively to the number of UGs. The actual cell cov-

erage percentage varied depending on the type of constructs used in

the input but all exhibited this effect in principle.

7.2.1.2. Correctness. A correct input consists of a set of uncertainty

constructs which are consistent (do not contradict with each other)

and do not contain any wrong assumption about the system which

they are describing. From such a correct input our approach is ex-

pected to only derive correct traces/no-traces but no inconsistencies.

We thus compared our approach’s results with the gold standard to

verify this. In total more than 33 million traces/no-traces relationships

were generated from the 597 inputs and none of them caused any in-

consistencies (i.e., no false inconsistencies). Furthermore, all inputs

were correctly refined by our approach and the generated traces/no-

traces were indeed a subset of the traces/no-traces available in the

original gold RTM (subset because none of the n input allowed for a

complete generation of the gold matrix). The very large number of in-

put and trace/no-trace comparisons with the gold standard does not

guarantee correctness but strongly supports our claim that the ap-

proach functions correctly in the presence of correct input (incorrect

input is discussed below).

7.2.1.3. Scalability. The performance and scalability of a system is

best measured by the throughput (size of the handled problem) and

the time required for the operation. Fig. 6 shows the performance

of TraceAnalyzer on test inputs generated for each of our test case

systems (Gantt, JHotDraw, and ReactOS Explorer). The input size was

again measured by the number of uncertainty groups (UGs) at the

x-axis and the runtime in milliseconds at the y-axis. For the sake

of brevity we limited the displayed data to test inputs with high-

est number of UGs which are most meaningful for performance and

scalability measurement. Each data point in the diagram presents the

time (milliseconds in the y-axis) consumed by our tool to analyze a

set of constructs (input) with the corresponding problem size (num-

ber of UGs in the x-axis). The time appears to grow strongly initially

with few UGs and then flats off quickly with increasing UGs (larger

SAT problems). We believe this is a reflection of the fact that little in-

put allows for many possible interpretations which are computation-
lly expensive to explore whereas more input implies more certainty

nd hence is faster to explore. Some outliers are visible in the figure

ut they are very few and they do not deviate very much from the

eneral performance observed. The time required by the TraceAna-

yzer to analyze and derive all the possible traces/no-traces is always

nder one second even with inputs containing more than 100.000

Gs, which shows that our approach is very scalable on correct in-

uts. Such a short reasoning time allows us to get a very fast response

ime in TraceAnalyzer, and thus we get an instant feedback about the

et of uncertainty constructs that we are writing into the tool.

It is important to note that our approach is incremental: i.e. adding

r retracting a construct to/from an analyzed input would not trig-

er a complete new analysis from scratch because TraceAnalyzer will

dd/retract the needed information for reasoning to/from the exist-

ng information from previous reasoning. This significantly reduces

he runtime performance of the reasoning engine (incremental rea-

oning).

While we appear to observe a linear behavior of the execution

ime based on batch evaluations, we found that our approach per-

orms much faster if relationships are added incrementally (data

mitted for brevity). The incremental nature of our approach intro-

uces more flexibility for the engineer. As a main benefit, we name

he fact that the engineer is not obliged to run the entire analysis af-

er each change s/he makes. TraceAnalyzer will detect the changes

nd rerun the analysis incrementally for the changed input only.

.2.2. Evaluation with partially incorrect input

As was explained above, an erroneous input is likely in traceabil-

ty. An incorrect input about a system should lead to an inconsistency

hich is reported back to the engineer once detected. Every inconsis-

ency should be tracked back to its origins and the exact constructs

esponsible for it should be determined. Correctly understanding the

ncorrectness is not only important for the reporting to the user but

lso for isolating its effect to ensure correct reasoning. The engineer

ay fix the inconsistency right away if she/he has the correct knowl-

dge. Or the engineer could let our approach isolate the inconsistency

nd continue reasoning about the rest of the input.

Inconsistencies in the input imply incorrect traceability knowl-

dge. Consistent input does not necessarily imply correctness. Our

pproach is vulnerable to incorrect but consistent input (as are proba-

ly most software engineering techniques today). If the engineer pro-

ides an incorrect, but consistent input, our approach would not be

ble to detect any inconsistencies and it would generate traces/no-

races based on that incorrect input. However we find that trace

apture is generally a task that multiple engineers have to perform

nd herein lies the strengths of our approach. Incorrect but consis-

ent input is increasingly unlikely with increasing number of engi-

eers involved. As a result, we expect input inconsistencies to be

ikely in larger projects and our approach will detect such inconsis-

encies and notify the responsible engineers. There is unfortunately

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192 189

Fig. 7. Input Size to Detecting Errors.

n

r

f

f

h

c

i

u

e

7

t

t

l

o

U

r

i

a

w

r

d

t

e

w

t

i

7

B

i

t

i

i

o

r

i

t

p

c

p

a

p

a

o

t

t

i

i

s

C

7

t

a

p

v

s

e

g

a

p

n

t

c

a

t

7

p

i

t

o

p

s

t

o study about how these errors are distributed or in which kind of

elationship are they more likely. However, we previously did per-

orm a controlled experiment where we let engineers recover traces

or our three case study systems and (Egyed et al., 2010) and we thus

ad available a large set of data on real artifact to code traces that

ontained many errors (when compared to the gold RTM). We thus

njected those erroneous traces into the otherwise correct inputs we

sed in the above validation – in total we generated 354 inputs with

rrors.

.2.2.1. Likelihood of error detection. Not surprisingly, we found that

he more input is provided the more likely an inconsistency is de-

ected. We observed this behavior by computing the Detection De-

ay¥ between injecting an error and detecting it. Fig. 7 summarizes

ur findings. The x-axis depicts the size of the input (percentage of

Gs from the their total number for each input) when injecting an er-

or and the y-axis depicts how many more UGs were needed until the

nconsistency was detected. Obviously the errors which are injected

t the beginning, when the input is still small, stay undetected for a

hile until a considerable number of UGs is added. But when the er-

or is injected at a point where many UGs already existed then it gets

etected very quickly. This can be seen at the right of Fig. 7 where

he number of UGs required until detecting an error becomes almost

qual to zero. This observation confirms our previous argument that

ith increasing quantity of input it becomes increasingly unlikely

hat an input containing errors remains consistent, especially if the

nput is provided by different engineers.

.2.2.2. Completeness of reasoning in the presence of erroneous input.

eing able to detect inconsistencies is important for correct reason-
(a) Median Isolated Cells

Fig. 8. Completeness wi
ng in the presence of inconsistencies. Recall that our approach is able

o do so once the inconsistency is encountered – in which case, the

solation will eliminate the inconsistency conservatively by eliminat-

ng all clauses that contributed to it and thereby any/all errors. Previ-

usly, in Fig. 5 we showed that the amount of traces/no-traces covered

ises very quickly at the beginning of the input and it flattens with

ncreasing input. It stands to reason that by removing some input,

he effect should be little compared to the size of the totally com-

uted traces. Fig. 8 shows the difference of the coverage of the RTM

ells gained from analyzing test inputs containing incorrectness com-

ared to correct input. Every scatter in the diagram shows the aver-

ge number of RTM cells (over all test inputs for each system) com-

ared to the original covered cells when the input did not contain

ny errors. The percentage of the input size designates the number

f constructs which are already analyzed by our tool. Fig. 8a shows

he median number of cells lost in all our test inputs. The Fig. 8b on

he right shows the maximum number of cells isolated in all our test

nputs. The negative number of cells means that the input containing

ncorrectness covered less cells in the RTM than the correct input. We

ee that this number is very small and cover typically 10 cells or less.

ompared to the total number of cells, the isolation thus affects <1%.

.2.2.3. Correctness of reasoning with erroneous input. We argued that

he HUMUS isolation is comprehensive. Thus, after the isolation, the

pproach is supposed to yield a less complete but correct RTM. The

revious section demonstrated that the effect on completeness is

ery small. To test the correctness, we seeded single errors in inputs

uch that a detected inconsistency and isolation should eliminate the

rror always. We then compared the RTM after the isolation with the

old RTM to test the correctness of the reasoning and found that our

pproach was always correct after isolation. In the cases were our ap-

roach was not able to detect an inconsistency; we obviously could

ot detect the injected error. There was little benefit in measuring

his error as virtually all software engineering approaches are sus-

eptible to problems of undetected, incorrect input. However, as we

lready discussed above, the likelihood of an error remaining unde-

ected decreases over time.

.2.2.4. Scalability. The input with incorrectness requires more com-

utational time because of the additional HUMUS computation to

solate the inconsistency. When HUMUS detects an inconsistency in

he input, it does isolate the responsible input constructs. At any point

f the reasoning, the isolation means two tasks: (1) all the reasoning

arts, which are already computed based on those inconsistent con-

tructs, should be rolled back; and (2) no further reasoning is allowed

o take those inconsistent constructs into account. Fig. 9 shows the
(b) MaximumIsolatedCells

th Incorrect Input.

190 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192

Fig. 9. Scalability with Incorrect Input.

t

t

t

(

n

t

b

t

t

c

l

a

o

p

t

c

o

i

m

fi

s

m

w

s

l

f

9

c

c

s

d

p

c

i

C

fi

f

a

2

i

i

e

m

g

s

t

r

w

w

o

C

1

s

b

s

e

i

a

time required to run the erroneous inputs. The maximum time re-

quired has increased from less than 1 s (see Fig. 6) to more than 10 s.

Compared to correct test inputs, the total time needed for reasoning

increases significantly, but we believe that this amount of time is still

acceptable because it is a onetime cost. After isolation, the input is

consistent again and the subsequent cost is the same as the reason-

ing without error (Section 7.2.1.3). The incremental nature of our ap-

proach makes it highly scalable even though the total time consumed

to analyze an entire input has increased. Our approach requires more

time to reason about uncertainty constructs which are in contradic-

tion with other constructs. But in practice the engineer will feed the

tool incrementally with single constructs and only when she/he adds

an inconsistency then the tool would take few seconds to identify,

isolate, and return a feedback, which is still an acceptable user expe-

rience. Again, we note that the computational time increases sharply

for few UGs and flattens with increasing UGs. We thus do not expect

that the computational cost will increase much further with larger

case studies.

8. Threats to validity

Our approach is able to detect incorrect input. However, here a

thread to validity is our assumption that incorrect input coincides

with contradictory input. This must not be case always. For example,

if two engineers have a wrong but consistent understand of the trace-

ability of the system then out approach would not identify inconsis-

tencies. Our approach is thus vulnerable to this problem which would

limit its usefulness despite its rigor. Our approach is intuitive and

caters to obvious uncertainties that an engineer would really have.

However, here again we learned from the aforementioned controlled

experiments (Egyed et al., 2010). While there were few hotspots

where engineers tend to err consistently, most errors where isolated

and engineers often had contradictory understandings (i.e., when-

ever multiple engineers investigated the same cell of a trace matrix

then there typically where inconsistent opinions). This strongly sup-

ports our argument that incorrect but consistent input is possible but

not common.

Another thread to validity is that we did not consider the cost of

capturing traceability. Traceability is useful only if the cost of cap-

turing traceability is less than the benefits of using it. However, this

cost/benefit question is not specific about our approach but rather

about traceability as a whole. Unfortunately, today we have no effec-

tive benchmarks to assess cost/benefit trade-offs in traceability be-

cause the uses of traceability are diverse and no studies exist that

cover the cost. However, the perceived benefits are strong enough for

existing standards (CMM, FAA) to mandate traceability. Our approach

does not change the basic complexity of traceability (n2) and it was

not meant to be a mechanism for saving cost. The key question is thus

whether our approach makes trace capture more complex than sim-

ply filling in a trace matrix. Here we see no reason that this should be
he case either. After all, there is also the cost of wrong traceability

o consider. If engineers are not able to separate precise from uncer-

ain knowledge then engineers may fail to capture some traceability

incompleteness) or make arbitrary decisions with others (incorrect-

ess). Neither is beneficial and our approach at least avoids those and

heir subsequent problems. So while the approach may not be a cost

enefit itself, it is not a loss either and the more accurate reflection of

raceability should benefit downstream uses.

The introduction also motivated the role of evolution in keeping

races complete and correct. Yet we did not consider evolutionary

hange to traceability explicitly. This is true but we believe that evo-

utionary changes are simply input changes and can be handled like

ny new/changed input. However, evolutionary changes have the risk

f not having been applied consistently and, in such cases, our ap-

roach should detect inconsistencies. Hence, the evaluation with par-

ially incorrect input was also an evaluation of evolutionary changes

arried out inconsistently. Here the incorrect input would refer to

lder, outdated input that is now inconsistent with newer, evolved

nput.

Finally, the evaluation in this work focused entirely on require-

ents to code traces and not arbitrary artifacts. Yet, the problem of

lling in a trace matrix is the same regardless of artifact type and we

ee no reason why the results ought to differ from, say, models. Again,

erely the usefulness could be different though for assessing that we

ould need more user studies as was already discussed. On a smaller

cale, we did validate models as well (Ghabi and Egyed, 2012) but we

ack large data sets for a systematic comparison. This is also a focus of

uture work.

. Future work

We validated our approach using automatically generated tests

overing most possible combinations of correct inputs and inputs

ontaining errors. We believe that such a validation is useful to as-

ess scalability, correctness, and completeness. Furthermore we con-

ucted a user experiment which confirm the usefullness of our ap-

roach. It would also be interesting to see whether our approach

ould be a complement to other trace capture techniques such as

nformation retrieval (IR) (Cleland-Huang et al., 2007; Duan and

leland-Huang, 2007) which are known to contain many erroneous

ndings. These are future work but it should be noted that the need

or a better language is not only motivated by our useability study but

lso by a series of experiments (Egyed et al., 2010; Mäder and Egyed,

012) where it was observed that engineers often have difficulties

n correctly and completely identifying traces. The present language

s the result of several years of observations involved both experi-

nced and inexperienced subjects. The key observation is that a trace

atrix is not an ideal medium for capturing traceability. Our lan-

uage is meant to be the beginning. As two subjecs in our useability

tudy suggested, other constructs could be useful also. For instance

wo developers requested having the constructs defined in both di-

ections: from requirements to code and from code to requirements,

hich is not supported at the moment. As part of our future work,

e intend to conduct a more elaborate experiment on a longer span

f time with more participants. The partner company implementing

MA will continue to use our approach.

0. Related work

Research on traceability has progressed significantly and re-

earchers have been developing automated approaches that go far

eyond simple “recording and replaying” of trace links (which is

till the level of support in many commercial tools). One of the

arliest technologies for recovering requirements to code traces

s information retrieval (IR) (Cleland-Huang et al., 2007; Duan

nd Cleland-Huang, 2007) which identifies trace links based on

A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192 191

n

b

k

s

2

M

a

(

n

E

2

C

Q

b

e

f

h

a

S

H

a

t

v

a

a

f

g

a

n

t

a

T

a

o

s

S

f

(

m

a

a

G

r

e

e

a

d

s

i

(

o

a

f

o

r

n

s

T

q

t

c

2

t

h

l

d

n

1

c

a

c

a

a

l

t

p

t

t

p

g

m

A

F

R

D

G

J
R

A

A

B

B

B

B

B

C

C

C

C

C

D

D
D

E

aming similarities. Today, however, the traceability research goes

eyond requirements-to-code traceability. There are many other

inds of approaches for the recovery of different types of trace links

uch as code and models (Antoniol, 2001; Egyed and Grunbacher,

002; Murphy et al., 1995), code and documentation (Marcus and

aletic, 2003), architecture and test cases (Muccini et al., 2004),

rchitecture and code (Murta et al., 2008), or features and code

Dagenais et al., 2007)]. Researchers have proposed various tech-

iques and heuristics to support the automation of trace recovery.

xamples include event-based approaches (Cleland-Huang et al.,

003), information retrieval (Cleland-Huang et al., 2007; Duan and

leland-Huang, 2007), feature location techniques (Koschke and

uante, 2005), process-oriented approaches (Pohl, 1996) scenario-

ased techniques (Egyed, 2003), or rule-based methods (Spanoudakis

t al., 2004). This list of technologies recovers certain types of traces,

or certain types of artifacts, at certain times. Although advances

ave been made to automatically recover links, trace capture remains

human-intensive activity (Gotel and Finkelstein, 1994; Lindvall and

andahl, 1996; Neumuller and Grunbacher, 2006) The approaches of

aumer et al. (1999), Jackson (1991), and Cox et al. (2001) constitute

small sample of manual traceability techniques. Some of them infer

races based on keywords whereas others use a rich set of media (e.g.,

ideo, audio, etc.) to capture and maintain trace rationale. Concept

nalysis has been used in concert with manual input to provide

structured way of grouping traces. These groupings can then be

ormed into a concept lattice that is similar in nature to our footprint

raph – but not as scalable (Koschke and Quante, 2005). Pinheiro

nd Goguen (1996) approached traceability by devising an elaborate

etwork of trace dependencies and transitive rules among them

o support requirements traceability. Their approach, called TOOR,

ddresses traceability by reasoning about technical and social factors.

heir approach emphasizes on requirements. Antoniol et al. discuss

technique for automatically recovering traceability links between

bject-oriented design models and code based on determining the

imilarity of paired elements from design and code (Antoniol, 2001).

panoudakis et al. (2004) have contributed a rule-based approach

or automatically generating and maintaining traceability relations

between organizational models specified in i∗ and software systems

odels represented in UML). In the goal-centric traceability (GCT)

pproach, Cleland-Huang et al. model non-functional requirements

nd their interdependencies as soft-goals in an Interdependency

raph. In their approach a probabilistic network model is used to

etrieve links between classes affected by a functional change and

lements within the graph (Cleland-Huang et al., 2007). A forward

ngineering approach is taken by Richardson and Green (2004) in the

rea of program synthesis. Traceability relations are automatically

erived between parts of a formal specification and parts of the

ynthesized program.

This proposed work is not the first work that recognizes the value

n combining model dependencies (some limited types thereof)

Cleland-Huang et al., 2005; Eaddy et al., 2008). However, to the best

f our knowledge thus far nobody has tried to integrate and reason

bout many dimensions of model dependencies in such a rigorous,

ormal, and precise manner as we are proposing here. Also, the issues

f uncertainties discussed in this work have not been explored in

elated work to the best of our knowledge. It is also important to

ote that traceability approaches typically do not provide explicit

upport for trace utilizations such as impact or coverage analysis.

hey rather provide general purpose features to create reports or

uery traceability information. Researchers have been proposing

echniques to improve support for important tasks such as analyzing

hange impacts (Abbattista et al., 1994; Briand et al., 2003; Lee et al.,

000; Tonella, 2003) or understanding the conflict and coopera-

ion among requirements (Egyed and Grunbacher, 2004). There is

owever very little literature on the quality implications of trace

inks during such utilizations. As elsewhere, the utility of trace links
ecreases when the trace quality decreases. However, today, we have

o understanding on how strong this effect is.

1. Conclusion

This paper presented an extension to our approach to trace dis-

overy and validation. Our approach expects the engineer to define

ssumptions on artifact-to-code traces (with incompleteness and un-

ertainties) and it then analyzes the correctness of these assumptions

nd is capable of resolving uncertainties. It must be noted that our

pproach does not “invent” traces. It discovers them based on the

ogical consequences of the assumptions provided. The ability to de-

ect incorrectness shields the engineer from making errors. This is

articularly important if the input was generated “after the fact” (af-

er key people have moved on or may have forgotten vital details), if

he input was generated by different people (with inconsistent inter-

retations of traces), or if legacy traceability was reused (previously

enerated but no longer up-to-date) – as is typical during software

aintenance.

cknowledgement

We gratefully acknowledge funding from the Austrian Science

und (FWF): P 23115-N23.

eferences

rools, http://www.jboss.org/drools/. (Online; accessed 21.01.14) (2014).

antt Project, http://www.ganttproject.biz/. (Online; accessed 21.01.14). (2014).

HotDraw, http://www.jhotdraw.org/. (Online; accessed 21.01.14). (2014).
eactOS, http://www.reactos.org/. (Online; accessed 21.01.14). (2014).

bbattista, F., Lanubile, F., Mastelloni, G., Visaggio, G., 1994. An experiment on the effect
of design recording on impact analysis. In: Proceedings of the International Con-

ference on Software Maintenance, pp. 253–259. doi:10.1109/ICSM.1994.336769.
ntoniol, G., 2001. Design-code traceability recovery: selecting the basic link-

age properties. Sci. Comput. Program. 40 (2-3), 213–234. doi:10.1016/S0167-

6423(01)00016-8.
ianchi, A., Fasolino, A., Visaggio, G., 2000. An exploratory case study of the

maintenance effectiveness of traceability models. In: Proceedings 8th Interna-
tional Workshop on Program Comprehension. Limerick, Ireland, pp. 149–158.

doi:10.1109/WPC.2000.852489.
iere, A., 2008. Picosat essentials. In: Journal on Satisfiability, Boolean Modeling and

Computation (JSAT), 4. Delft University, pp. 75–97.

riand, L., Falessi, D., Nejati, S., Sabetzadeh, M., Yue, T., 2014. Traceability and SysML
design slices to support safety inspections: a controlled experiment. ACM Trans.

Softw. Eng. Methodol. 23 (1), 9:1–9:43. doi:10.1145/2559978.
riand, L.C., Labiche, Y., O’Sullivan, L., 2003. Impact analysis and change management

of UML models. In: Proceedings of the International Conference on Software Main-
tenance. IEEE Computer Society, Washington, DC, USA, p. 256.

riand, L.C., Labiche, Y., O’Sullivan, L., SÃşwka, M., 2006. Automated impact analysis of

UML models. J. Syst. Softw. 79 (3), 339–352. doi:10.1016/j.jss.2005.05.001.
larke, S., Harrison, W., Ossher, H., Tarr, P., 1999. Subject-oriented design: towards im-

proved alignment of requirements, design, and code. SIGPLAN Not. 34 (10), 325–
339. doi:10.1145/320385.320420.

leland-Huang, J., Chang, C., Christensen, M., 2003. Event-Based traceability for
managing evolutionary change. IEEE Trans. Softw. Eng. 29 (9), 796–810.

doi:10.1109/TSE.2003.1232285.

leland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S., 2005.
Goal-centric traceability for managing non-functional requirements. In: Proceed-

ings. 27th International Conference on Software Engineering, ICSE, pp. 362–371.
doi:10.1109/ICSE.2005.1553579.

leland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., Clark, S., 2007. Best practices
for automated traceability. Computer 40 (6), 27–35. doi:10.1109/MC.2007.195.

ox, L., Harry, D., Skipper, D., Delugach, H.S., 2001. Dependency analysis using con-

ceptual graphs. In: Proceedings of the 9th International Conference on Conceptual
Structures, ICCS 2001. Springer, pp. 117–130.

agenais, B., Breu, S., Warr, F., Robillard, M., 2007. Inferring structural patterns for
concern traceability in evolving software. In: Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineering. ACM,
New York, NY, USA, pp. 254–263. doi:10.1145/1321631.1321669.

ohyung, K., Java MPEG player. http://peace.snu.ac.kr/dhkim/java/MPEG/.
uan, C., Cleland-Huang, J., 2007. Clustering support for automated tracing. In: Pro-

ceedings of the 22nd IEEE/ACM international conference on Automated software

engineering. ACM, New York, NY, USA, pp. 244–253. doi:10.1145/1321631.1321668.
addy, M., Aho, A., Antoniol, G., Guéhéneuc, Y., 2008. CERBERUS: tracing requirements

to source code using information retrieval, dynamic analysis, and program analy-
sis. In: The 16th IEEE International Conference on Program Comprehension. Ams-

terdam, The Netherlands, pp. 53–62. doi:10.1109/ICPC.2008.39.

http://dx.doi.org/10.13039/501100002428
http://www.jboss.org/drools/
http://www.ganttproject.biz/
http://www.jhotdraw.org/
http://www.reactos.org/
http://dx.doi.org/10.1109/ICSM.1994.336769
http://dx.doi.org/10.1016/S0167-6423(01)00016-8
http://dx.doi.org/10.1109/WPC.2000.852489
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0004
http://dx.doi.org/10.1145/2559978
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0005
http://dx.doi.org/10.1016/j.jss.2005.05.001
http://dx.doi.org/10.1145/320385.320420
http://dx.doi.org/10.1109/TSE.2003.1232285
http://dx.doi.org/10.1109/ICSE.2005.1553579
http://dx.doi.org/10.1109/MC.2007.195
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0011
http://dx.doi.org/10.1145/1321631.1321669
http://peace.snu.ac.kr/dhkim/java/MPEG/
http://dx.doi.org/10.1145/1321631.1321668
http://dx.doi.org/10.1109/ICPC.2008.39

192 A. Ghabi, A. Egyed / The Journal of Systems and Software 108 (2015) 178–192

M

N

N

P

P

P

R

S

T

Egyed, A., 2003. A Scenario-Driven approach to trace dependency analysis. IEEE Trans.
Softw. Eng. 29 (2), 116–132. doi:10.1109/TSE.2003.1178051.

Egyed, A., 2004. Resolving uncertainties during trace analysis. In: Proceedings of the
12th ACM SIGSOFT International Symposium on Foundations of Software Engi-

neering. ACM, New York, NY, USA, pp. 3–12. doi:10.1145/1029894.1029899.
Egyed, A., Biffl, S., Heindl, M., Grünbacher, P., 2005. Determining the cost-quality trade-

off for automated software traceability. In: Proceedings of the 20th IEEE/ACM In-
ternational Conference on Automated Software Engineering. ACM, New York, NY,

USA, pp. 360–363. doi:10.1145/1101908.1101970.

Egyed, A., Graf, F., Grünbacher, P., 2010. Effort and quality of recovering requirements-
to-code traces: Two exploratory experiments. In: Requirements Engineering Con-

ference (RE), 18th IEEE International. Sydney, NSW, pp. 221–230.
Egyed, A., Grunbacher, P., 2002. Automating requirements traceability: beyond the

record & replay paradigm. In: 17th IEEE International Conference on Automated
Software Engineering. IEEE, pp. 163–171. doi:10.1109/ASE.2002.1115010.

Egyed, A., Grunbacher, P., 2004. Identifying requirements conflicts and cooperation:

how quality attributes and automated traceability can help. Software, IEEE 21 (6),
50–58. doi:10.1109/MS.2004.40.

Ghabi, A., Egyed, A., 2012. Exploiting traceability uncertainty between architectural
models and code. In: Joint Working IEEE/IFIP Conference on Software Architecture

(WICSA) and European Conference on Software Architecture (ECSA), pp. 171–180.
doi:10.1109/WICSA-ECSA.212.25.

Gotel, O., Finkelstein, C., 1994. An analysis of the requirements traceability problem. In:

Proceedings of IEEE International Conference on Requirements Engineering. Col-
orado Springs, COUSA, pp. 94–101. doi:10.1109/ICRE.1994.292398.

Haumer, P., Pohl, K., Weidenhaupt, K., Jarke, M., 1999. Improving reviews by extended
traceability. In: Systems Sciences, 1999. HICSS-32. Proceedings of the 32nd Annual

Hawaii International Conference on, Track3, p. 10. doi:10.1109/HICSS.1999.772891.
Jackson, J., 1991. A keyphrase based traceability scheme. In: IEE Colloquium on Tools

and Techniques for Maintaining Traceability During Design, pp. 2/1–2/4.

Koschke, R., Quante, J., 2005. On dynamic feature location. In: Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering. Long

Beach, CA, USA, p. 86. doi:10.1145/1101908.1101923.
Lee, M., Offutt, A., Alexander, R., 2000. Algorithmic analysis of the impacts of changes

to Object-Oriented software. In: Proceedings of the Technology of Object-Oriented
Languages and Systems (TOOLS 34’00). IEEE Computer Society, Washington, DC,

USA, p. 61.

Li, C.M., Manyà, F., 2009. MaxSAT, Hard and Soft Constraints. In: Handbook of Satisfia-
bility. IOS Press, pp. 613–631.

Lindvall, M., Sandahl, K., 1996. Practical implications of traceability. Softw.: Pract.
Exp. 26 (10), 1161–1180. doi:10.1002/(SICI)1097-024X(199610)26:10<1161::AID-

SPE58>3.0.CO;2-X.
Mäder, P., Egyed, A., 2011. Do software engineers benefit from source code navigation

with traceability? an experiment in software change management. In: Proceedings

of the 26th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2011, pp. 444–447. doi:10.1109/ASE.2011.6100095.

Mäder, P., Egyed, A., 2012. Assessing the effect of requirements traceability for soft-
ware maintenance. In: 28th IEEE International Conference on Software Mainte-

nance ICSM, Trento, Italy, pp. 171–180. doi:10.1109/ICSM.2012.6405269.
Marcus, A., Maletic, J.I., 2003. Recovering documentation-to-source-code traceability

links using latent semantic indexing. In: Proceedings of the 25th International Con-
ference on Software Engineering. IEEE Computer Society, Washington, DC, USA,

pp. 125–135.

Muccini, H., Inverardi, P., Bertolino, A., 2004. Using software architecture for code test-
ing. IEEE Trans. Softw. Eng. 30 (3), 160–171. doi:10.1109/TSE.2004.1271170.

Murphy, G.C., Notkin, D., Sullivan, K., 1995. Software reflexion models: bridging the
gap between source and high-level models. In: Proceedings of the 3rd ACM SIG-

SOFT symposium on Foundations of software engineering. ACM, New York, NY,
USA, pp. 18–28. doi:10.1145/222124.222136.
urta, L.G., Hoek, A., Werner, C.M., 2008. Continuous and automated evolution of
architecture-to-implementation traceability links. Automated Software Engg. 15

(1), 75–107. doi:10.1007/s10515-007-0020-6.
eumuller, C., Grunbacher, P., 2006. Automating software traceability in very

small companies: a case study and lessons learned. In: 21st IEEE/ACM In-
ternational Conference on Automated Software Engineering, pp. 145–156.

doi:10.1109/ASE.2006.25.
öhrer, A., Biere, A., Egyed, A., 2012. Managing SAT inconsistencies with HUMUS. In:

VaMoS, pp. 83–91.

arnas, D.L., 1972. On the criteria to be used in decomposing systems into modules.
Commun. ACM 15 (12), 1053–1058. doi:10.1145/361598.361623.

inheiro, F.A.C., Goguen, J.A., 1996. An Object-Oriented tool for tracing requirements.
IEEE Softw. 13 (2), 52–64. doi:10.1109/52.506462.

ohl, K., 1996. PRO-ART: enabling requirements pre-traceability. In: Proceedings of
the Second International Conference on Requirements Engineering, pp. 76–84.

doi:10.1109/ICRE.1996.491432.

ichardson, J., Green, J., 2004. Automating traceability for generated software arti-
facts. In: Proceedings of the 19th IEEE international conference on Automated

software engineering. IEEE Computer Society, Washington, DC, USA, pp. 24–33.
doi:10.1109/ASE.2004.20.

panoudakis, G., Zisman, A., Perez-Miñana, E., Krause, P., 2004. Rule-based gen-
eration of requirements traceability relations. J. Syst. Softw. 72 (2), 105–127.

doi:10.1016/S0164-1212(03)00242-5.

onella, P., 2003. Using a concept lattice of decomposition slices for program
understanding and impact analysis. IEEE Trans. Softw. Eng. 29 (6), 495–509.

http://doi.ieeecomputersociety.org/10.1109/TSE.2003.1205178.

Achraf Ghabi M.Sc received his B.S. degree in 2008 and
his M.Sc. degree in 2011 in Computer Science both from

Johannes Kepler University, Linz, Austria. He is currently a
Ph.D. Candidate at the Institute for Software Systems Engi-

neering at the Johannes Kepler University under the men-
torship of Prof. Dr. Alexander Egyed. His research interests

include requirements engineering, traceability, and change

impact analysis.

Prof. Dr. Alexander Egyed heads the Institute for Software

Systems Engineering at the Johannes Kepler University, Aus-
tria. He is also an Adjunct Assistant Professor at the Univer-

sity of Southern California, USA. Before joining the JKU, Dr.
Egyed worked as a Research Scientist for Teknowledge Cor-

poration, USA (2000–2007) and then as a Research Fellow at

the University College London, UK (2007–2008). Dr. Egyed
received a Doctorate degree in 2000 and a Master of Science

degree in 1996, both in Computer Science, from the Univer-
sity of Southern California, USA under the mentorship of Dr.

Barry Boehm. His research interests include software design
modeling, requirements engineering, consistency checking

and resolution, traceability, and change impact analysis.

http://dx.doi.org/10.1109/TSE.2003.1178051
http://dx.doi.org/10.1145/1029894.1029899
http://dx.doi.org/10.1145/1101908.1101970
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0018
http://dx.doi.org/10.1109/ASE.2002.1115010
http://dx.doi.org/10.1109/MS.2004.40
http://dx.doi.org/10.1109/WICSA-ECSA.212.25
http://dx.doi.org/10.1109/ICRE.1994.292398
http://dx.doi.org/10.1109/HICSS.1999.772891
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0024
http://dx.doi.org/10.1145/1101908.1101923
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0027
http://dx.doi.org/10.1002/(SICI)1097-024X(199610)26:10<1161::AID-SPE58>3.0.CO;2-X
http://dx.doi.org/10.1109/ASE.2011.6100095
http://dx.doi.org/10.1109/ICSM.2012.6405269
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0031
http://dx.doi.org/10.1109/TSE.2004.1271170
http://dx.doi.org/10.1145/222124.222136
http://dx.doi.org/10.1007/s10515-007-0020-6
http://dx.doi.org/10.1109/ASE.2006.25
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00133-8/sbref0036
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1109/52.506462
http://dx.doi.org/10.1109/ICRE.1996.491432
http://dx.doi.org/10.1109/ASE.2004.20
http://dx.doi.org/10.1016/S0164-1212(03)00242-5
http://doi.ieeecomputersociety.org/10.1109/TSE.2003.1205178

	Exploiting traceability uncertainty among artifacts and code
	1 Introduction
	2 Illustration
	3 Artifacts and code relationships
	4 Language for expressing traceability
	4.1 Precise trace information
	4.2 Expressing uncertainty
	4.3 Language for expressing uncertainty
	4.4 Defining common uncertainty constructs
	4.4.1 ImplAtLeast input
	4.4.2 ImplAtMost input
	4.4.3 ImplNot input
	4.4.4 ImplExactly input
	4.4.5 Footprint graph
	4.4.6 Propagation rules for reducing uncertainty
	4.4.7 Propagation rules for suggesting trace
	4.4.8 Consistency constraints
	4.4.9 Granularity constraints
	4.4.10 Completeness constraints

	5 Encoding and correct reasoning
	5.1 Encoding traceability language in drools
	5.2 Encoding traceability language in SAT
	5.3 Reasoning about traceability in SAT
	5.4 Correct SAT reasoning with Humus

	6 Proof of concept tool
	7 Validation
	7.1 Usefulness
	7.2 Correctness, completeness, and scalability
	7.2.1 Evaluation with correct input
	7.2.2 Evaluation with partially incorrect input

	8 Threats to validity
	9 Future work
	10 Related work
	11 Conclusion
	 Acknowledgement
	 References

